|
|
Modeling hydrogen exchange of proteins by a multiscale method |
Wentao Zhu(祝文涛), Wenfei Li(李文飞)†, and Wei Wang(王炜)‡ |
School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract We proposed a practical way for mapping the results of coarse-grained molecular simulations to the observables in hydrogen change experiments. By combining an atomic-interaction based coarse-grained model with an all-atom structure reconstruction algorithm, we reproduced the experimental hydrogen exchange data with reasonable accuracy using molecular dynamics simulations. We also showed that the coarse-grained model can be further improved by imposing experimental restraints from hydrogen exchange data via an iterative optimization strategy. These results suggest that it is feasible to develop an integrative molecular simulation scheme by incorporating the hydrogen exchange data into the coarse-grained molecular dynamics simulations and therefore help to overcome the accuracy bottleneck of coarse-grained models.
|
Received: 29 December 2020
Revised: 25 January 2021
Accepted manuscript online: 05 February 2021
|
PACS:
|
87.16.A-
|
(Theory, modeling, and simulations)
|
|
87.15.ap
|
(Molecular dynamics simulation)
|
|
87.14.E-
|
(Proteins)
|
|
87.18.Nq
|
(Large-scale biological processes and integrative biophysics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974173 and 11934008) and the HPC Center of Nanjing University. |
Corresponding Authors:
Wenfei Li, Wei Wang
E-mail: wangwei@nju.edu.cn;wfli@nju.edu.cn
|
Cite this article:
Wentao Zhu(祝文涛), Wenfei Li(李文飞), and Wei Wang(王炜) Modeling hydrogen exchange of proteins by a multiscale method 2021 Chin. Phys. B 30 078701
|
[1] Karplus M and McCammon J A 2002 Nat. Struct. Biol. 9 646 [2] Hansson T, Oostenbrink C and Gunsteren W V 2002 Curr. Opin. Struct. Biol. 12 190 [3] Karplus M and Kuriyan J 2005 Proc. Natl. Acad. Sci. USA 102 6679 [4] Klepeis J L, Lindor-Larsen K, Dror R O and Shaw D E 2009 Curr. Opin. Struct. Biol. 19 120 [5] Onuchic J N, Luthey-Schulten Z and Wolynes P G 1997 Annu. Rev. Phys. Chem. 48 545 [6] Noid W G 2013 J. Chem. Phys. 139 090901 [7] Marrink S J, Risselada H J, Yefimov S, Tieleman D P and de Vries A H 2007 J. Phys. Chem. B 111 7812 [8] Wang X, Li M, Ye F and Zhou X 2017 Acta Phys. Sin. 66 150201 (in Chinese) [9] Zhang P and Shi A 2015 Chin. Phys. B 24 128707 [10] Kenzaki H, Koga N, Hori N, Kanada R, Li W, Okazaki K, Yao X and Takada S 2011 J. Chem. Theory Comput. 7 1979 [11] Li W and Takada S 2009 J. Chem. Phys. 130 214108 [12] Takada S 2012 Curr. Opin. Struct. Biol. 22 130 [13] Zheng W 2015 Chin. Phys. B 24 128701 [14] Xu X and Shi J 2020 Chin. Phys. Lett. 37 068701 [15] Li W, Wang J, Zhang J and Wang W 2015 Curr. Opin. Struct. Biol. 30 25 [16] Li W, Zhang J, Wang J and Wang W 2015 Acta Phys. Sin 64 098701 (in Chinese) [17] Liu P and Voth G A 2007 J. Chem. Phys. 126 045106 [18] Lyman E, Ytreberg F M and Zuckerman D M 2006 Phys. Rev. Lett. 96 028105 [19] Christen M and van Gunsteren W F 2006 J. Chem. Phys. 124 154106 [20] Li W, Yoshii H, Hori N, Kameda T and Takada S 2010 Methods 52 106 [21] Larsen A H, Wang Y, Bottaro S, Grudinin S, Arleth L and Lindorff-Larsen K 2020 PLoS Comput. Biol. 16 e1007870 [22] Wen B, Peng J, Zuo X, Gong Q and Zhang Z 2014 Biophys. J. 107 956 [23] Kubo S, Niina T and Takada S 2020 Sci Rep 10 8225 [24] Chen J, Zhang Q, Ren W and Li W 2017 J. Phys. Chem. B 121 4987 [25] Wang Y, Gan L, Wang E and Wang J 2013 J. Chem. Theory Comput. 9 84 [26] Li W, Peng J, Zuo X, Gong Q and Zhang Z 2019 Phys. Rev. Lett. 122 238102 [27] Terakawa T and Takada S 2015 Sci Rep 5 17107 [28] Tan C and Takada S 2020 Proc. Natl. Acad. Sci. USA 117 20586 [29] Freeman G S, Lequieu J P, Hinckley D M, Whitmer J K and de Pablo J J 2014 Phys. Rev. Lett. 113 168101 [30] Zhang B and Wolynes P G 2015 Proc. Natl. Acad. Sci. USA 112 6062 [31] Ashwin S S, Nozaki T, Maeshima K and Sasai M 2019 Proc. Natl. Acad. Sci. USA 116 19939 [32] Putnam C, Hammel M, Hura G and Tainer J 2007 Q. Rev. Biophys. 40 191 [33] Larsen R G and Singel D J 1993 J. Chem. Phys. 98 5134 [34] Ghisaidoobe A B T and Chung S J 2014 Int. J. Mol. Sci. 15 22518 [35] Hvidt A and Nielsen S O 1966 Adv. Protein Chem. 21 287 [36] Ferraro D M, Lazo N D and Robertson A D 2004 Biochemistry 43 587 [37] Petruk A A, Defelipe L A, Rodríguez Limardo R G, Bucci H, Marti M A and Turjanski A G 2013 J. chem. Theory Comput. 9 658 [38] Park I, Venable J D, Steckler C, Cellitti S E, Lesley S A, Spraggon G and Brock A 2015 J. Chem. Inf. Model. 55 1914 [39] Best R B and Vendruscolo M 2006 Structure 14 97 [40] Skinner J J, Yu W, Gichana E K, Baxa M C, Hinshaw J R, Freed K F and Sosnick T R 2014 Proc. Natl. Acad. Sci. USA 111 15975 [41] Li W, Wang W and Takada S 2014 Proc. Natl. Acad. Sci. USA 111 10550 [42] Craig P O, Lätzer J, Weinkam P, Hoffman R M B, Ferreiro D U, Komives E A and Wolynes P G 2011 J. Am. Chem. Soc. 133 17463 [43] Li W, Wolynes P G and Takada S 2011 Proc. Natl. Acad. Sci. USA 108 3504 [44] Kumar S, Rosenberg J M, Bouzida D, Swendsen R H and Kollman P A 1992 J. Comput. Chem. 13 1011 [45] Neira J L, Itzhaki L S, Otzen D E, Davis B and Fershta A R 1997 J. Mol. Biol. 270 99 [46] Hernández G, Anderson J S and LeMaster D M 2009 Biochemistry 48 6482 [47] Pan Y and Briggs M S 1992 Biochemistry 31 11405 [48] Johnson E C, Lazar G A, Desjarlais J R and Handel T M 1999 Structure 7 967 [49] Bougault C, Feng L, Glushka J, Kupče E and Prestegard J H 2004 J. Biomol. NMR 28 385 [50] Khorasanizadeh S, Peters I D, Butt T R and Roder H 1993 Biochemistry 32 7054 [51] Lazar G A, Desjarlais J R and Handel T M 1997 Protein Sci. 6 1167 [52] Loh S N, Prehoda K E, Wang J and Markley J L 1993 Biochemistry 32 11022 [53] Mori S, Abeygunawardana C, Berg J M, van Zijl P C M 1997 J. Am. Chem. Soc. 119 6844 [54] Haglund E, Lind J, Öman T, Öhman A, Mäler L and Oliveberg M 2009 Proc. Natl. Acad. Sci. USA 106 21619 [55] Radford S E, Buck M, Topping K D, Dobson C M and Evans P A 1992 Proteins 14 237 [56] Sue S C, Cervantes C, Komives E A and Dyson H J 2008 J. Mol. Biol. 380 917 [57] McPhalen C A and James M N G 1987 Biochemistry 26 261 [58] Gront D, Kmiecik S and Kolinski A 2007 J. Comput. Chem. 28 1593 [59] Bower M J, Cohen F E and Dunbrack R L 1997 J. Mol. Biol. 267 1268 [60] Vendruscolo M, Paci E, Dobson C M and Karplus M 2003 J. Am. Chem. Soc. 125 15686 [61] Jacobs M D and Harrison S C 1998 Cell 95 749 [62] Heath A P, Kavraki L E and Clementi C 2007 Proteins 68 646 [63] Shimizu M and Takada S 2018 J. Chem. Theory Comput. 14 1682 [64] Badaczewska-Dawid A E, Kolinski A and Kmiecik S 2020 Comput. Struct. Biotech. J. 18 162 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|