Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 078701    DOI: 10.1088/1674-1056/abe377

Modeling hydrogen exchange of proteins by a multiscale method

Wentao Zhu(祝文涛), Wenfei Li(李文飞), and Wei Wang(王炜)
School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  We proposed a practical way for mapping the results of coarse-grained molecular simulations to the observables in hydrogen change experiments. By combining an atomic-interaction based coarse-grained model with an all-atom structure reconstruction algorithm, we reproduced the experimental hydrogen exchange data with reasonable accuracy using molecular dynamics simulations. We also showed that the coarse-grained model can be further improved by imposing experimental restraints from hydrogen exchange data via an iterative optimization strategy. These results suggest that it is feasible to develop an integrative molecular simulation scheme by incorporating the hydrogen exchange data into the coarse-grained molecular dynamics simulations and therefore help to overcome the accuracy bottleneck of coarse-grained models.
Keywords:  coarse-grained model      hydrogen exchange      multiscale method      proteins      integrative molecular simulations  
Received:  29 December 2020      Revised:  25 January 2021      Accepted manuscript online:  05 February 2021
PACS:  87.16.A- (Theory, modeling, and simulations)  
  87.15.ap (Molecular dynamics simulation)  
  87.14.E- (Proteins)  
  87.18.Nq (Large-scale biological processes and integrative biophysics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974173 and 11934008) and the HPC Center of Nanjing University.
Corresponding Authors:  Wenfei Li, Wei Wang     E-mail:;

Cite this article: 

Wentao Zhu(祝文涛), Wenfei Li(李文飞), and Wei Wang(王炜) Modeling hydrogen exchange of proteins by a multiscale method 2021 Chin. Phys. B 30 078701

[1] Karplus M and McCammon J A 2002 Nat. Struct. Biol. 9 646
[2] Hansson T, Oostenbrink C and Gunsteren W V 2002 Curr. Opin. Struct. Biol. 12 190
[3] Karplus M and Kuriyan J 2005 Proc. Natl. Acad. Sci. USA 102 6679
[4] Klepeis J L, Lindor-Larsen K, Dror R O and Shaw D E 2009 Curr. Opin. Struct. Biol. 19 120
[5] Onuchic J N, Luthey-Schulten Z and Wolynes P G 1997 Annu. Rev. Phys. Chem. 48 545
[6] Noid W G 2013 J. Chem. Phys. 139 090901
[7] Marrink S J, Risselada H J, Yefimov S, Tieleman D P and de Vries A H 2007 J. Phys. Chem. B 111 7812
[8] Wang X, Li M, Ye F and Zhou X 2017 Acta Phys. Sin. 66 150201 (in Chinese)
[9] Zhang P and Shi A 2015 Chin. Phys. B 24 128707
[10] Kenzaki H, Koga N, Hori N, Kanada R, Li W, Okazaki K, Yao X and Takada S 2011 J. Chem. Theory Comput. 7 1979
[11] Li W and Takada S 2009 J. Chem. Phys. 130 214108
[12] Takada S 2012 Curr. Opin. Struct. Biol. 22 130
[13] Zheng W 2015 Chin. Phys. B 24 128701
[14] Xu X and Shi J 2020 Chin. Phys. Lett. 37 068701
[15] Li W, Wang J, Zhang J and Wang W 2015 Curr. Opin. Struct. Biol. 30 25
[16] Li W, Zhang J, Wang J and Wang W 2015 Acta Phys. Sin 64 098701 (in Chinese)
[17] Liu P and Voth G A 2007 J. Chem. Phys. 126 045106
[18] Lyman E, Ytreberg F M and Zuckerman D M 2006 Phys. Rev. Lett. 96 028105
[19] Christen M and van Gunsteren W F 2006 J. Chem. Phys. 124 154106
[20] Li W, Yoshii H, Hori N, Kameda T and Takada S 2010 Methods 52 106
[21] Larsen A H, Wang Y, Bottaro S, Grudinin S, Arleth L and Lindorff-Larsen K 2020 PLoS Comput. Biol. 16 e1007870
[22] Wen B, Peng J, Zuo X, Gong Q and Zhang Z 2014 Biophys. J. 107 956
[23] Kubo S, Niina T and Takada S 2020 Sci Rep 10 8225
[24] Chen J, Zhang Q, Ren W and Li W 2017 J. Phys. Chem. B 121 4987
[25] Wang Y, Gan L, Wang E and Wang J 2013 J. Chem. Theory Comput. 9 84
[26] Li W, Peng J, Zuo X, Gong Q and Zhang Z 2019 Phys. Rev. Lett. 122 238102
[27] Terakawa T and Takada S 2015 Sci Rep 5 17107
[28] Tan C and Takada S 2020 Proc. Natl. Acad. Sci. USA 117 20586
[29] Freeman G S, Lequieu J P, Hinckley D M, Whitmer J K and de Pablo J J 2014 Phys. Rev. Lett. 113 168101
[30] Zhang B and Wolynes P G 2015 Proc. Natl. Acad. Sci. USA 112 6062
[31] Ashwin S S, Nozaki T, Maeshima K and Sasai M 2019 Proc. Natl. Acad. Sci. USA 116 19939
[32] Putnam C, Hammel M, Hura G and Tainer J 2007 Q. Rev. Biophys. 40 191
[33] Larsen R G and Singel D J 1993 J. Chem. Phys. 98 5134
[34] Ghisaidoobe A B T and Chung S J 2014 Int. J. Mol. Sci. 15 22518
[35] Hvidt A and Nielsen S O 1966 Adv. Protein Chem. 21 287
[36] Ferraro D M, Lazo N D and Robertson A D 2004 Biochemistry 43 587
[37] Petruk A A, Defelipe L A, Rodríguez Limardo R G, Bucci H, Marti M A and Turjanski A G 2013 J. chem. Theory Comput. 9 658
[38] Park I, Venable J D, Steckler C, Cellitti S E, Lesley S A, Spraggon G and Brock A 2015 J. Chem. Inf. Model. 55 1914
[39] Best R B and Vendruscolo M 2006 Structure 14 97
[40] Skinner J J, Yu W, Gichana E K, Baxa M C, Hinshaw J R, Freed K F and Sosnick T R 2014 Proc. Natl. Acad. Sci. USA 111 15975
[41] Li W, Wang W and Takada S 2014 Proc. Natl. Acad. Sci. USA 111 10550
[42] Craig P O, Lätzer J, Weinkam P, Hoffman R M B, Ferreiro D U, Komives E A and Wolynes P G 2011 J. Am. Chem. Soc. 133 17463
[43] Li W, Wolynes P G and Takada S 2011 Proc. Natl. Acad. Sci. USA 108 3504
[44] Kumar S, Rosenberg J M, Bouzida D, Swendsen R H and Kollman P A 1992 J. Comput. Chem. 13 1011
[45] Neira J L, Itzhaki L S, Otzen D E, Davis B and Fershta A R 1997 J. Mol. Biol. 270 99
[46] Hernández G, Anderson J S and LeMaster D M 2009 Biochemistry 48 6482
[47] Pan Y and Briggs M S 1992 Biochemistry 31 11405
[48] Johnson E C, Lazar G A, Desjarlais J R and Handel T M 1999 Structure 7 967
[49] Bougault C, Feng L, Glushka J, Kupče E and Prestegard J H 2004 J. Biomol. NMR 28 385
[50] Khorasanizadeh S, Peters I D, Butt T R and Roder H 1993 Biochemistry 32 7054
[51] Lazar G A, Desjarlais J R and Handel T M 1997 Protein Sci. 6 1167
[52] Loh S N, Prehoda K E, Wang J and Markley J L 1993 Biochemistry 32 11022
[53] Mori S, Abeygunawardana C, Berg J M, van Zijl P C M 1997 J. Am. Chem. Soc. 119 6844
[54] Haglund E, Lind J, Öman T, Öhman A, Mäler L and Oliveberg M 2009 Proc. Natl. Acad. Sci. USA 106 21619
[55] Radford S E, Buck M, Topping K D, Dobson C M and Evans P A 1992 Proteins 14 237
[56] Sue S C, Cervantes C, Komives E A and Dyson H J 2008 J. Mol. Biol. 380 917
[57] McPhalen C A and James M N G 1987 Biochemistry 26 261
[58] Gront D, Kmiecik S and Kolinski A 2007 J. Comput. Chem. 28 1593
[59] Bower M J, Cohen F E and Dunbrack R L 1997 J. Mol. Biol. 267 1268
[60] Vendruscolo M, Paci E, Dobson C M and Karplus M 2003 J. Am. Chem. Soc. 125 15686
[61] Jacobs M D and Harrison S C 1998 Cell 95 749
[62] Heath A P, Kavraki L E and Clementi C 2007 Proteins 68 646
[63] Shimizu M and Takada S 2018 J. Chem. Theory Comput. 14 1682
[64] Badaczewska-Dawid A E, Kolinski A and Kmiecik S 2020 Comput. Struct. Biotech. J. 18 162
[1] Biased random walk with restart for essential proteins prediction
Pengli Lu(卢鹏丽), Yuntian Chen(陈云天), Teng Zhang(张腾), and Yonggang Liao(廖永刚). Chin. Phys. B, 2022, 31(11): 118901.
[2] Knowledge-based potentials in bioinformatics: From a physicist's viewpoint
Zheng Wei-Mou (郑伟谋). Chin. Phys. B, 2015, 24(12): 128701.
[3] RNA structure prediction:Progress and perspective
Shi Ya-Zhou (时亚洲), Wu Yuan-Yan (吴园燕), Wang Feng-Hua (王凤华), Tan Zhi-Jie (谭志杰). Chin. Phys. B, 2014, 23(7): 078701.
[4] Proteins:From sequence to structure
Zheng Wei-Mou (郑伟谋). Chin. Phys. B, 2014, 23(7): 078705.
[5] Coupling of two-dimensional atomistic and continuum models for dynamic crack
Ren Guo-Wu (任国武), Tang Tie-Gang (汤铁钢). Chin. Phys. B, 2014, 23(11): 118704.
[6] Predicting the subcellular location of apoptosis proteins based on recurrence quantification analysis and the Hilbert–Huang transform
Han Guo-Sheng(韩国胜), Yu Zu-Guo(喻祖国), and Anh Vo . Chin. Phys. B, 2011, 20(10): 100504.
[7] Combining SAD/SIR iteration and MR iteration in partial-model extension of proteins
Zhang Tao(张涛), Wu Li-Jie(武丽杰), Gu Yuan-Xin(古元新), Zheng Chao-De(郑朝德), and Fan Hai-Fu(范海福). Chin. Phys. B, 2010, 19(9): 096101.
[8] New expression of bimodal phase distributions in direct-method phasing of protein single-wavelength anomalous diffraction data
Zhang Tao (张涛), Gu Yuan-Xin (古元新), Zheng Chao-De (郑朝德), Fan Hai-Fu (范海福). Chin. Phys. B, 2010, 19(8): 086102.
[9] OASIS4.0—a new version of the program OASIS for phasing protein diffraction data
Zhang Tao(张涛), Gu Yuan-Xin(古元新), Zheng Chao-De(郑朝德), and Fan Hai-Fu(范海福). Chin. Phys. B, 2010, 19(8): 086103.
[10] Chaos game representation of functional protein sequences, and simulation and multifractal analysis of induced measures
Yu Zu-Guo(喻祖国), Xiao Qian-Jun(肖前军), Shi Long(石龙), Yu Jun-Wu(余君武), and Vo Anh. Chin. Phys. B, 2010, 19(6): 068701.
[11] Structural statistical properties of knotted proteins
Wang Xiang-Hong(王向红), Shen Yu(沈瑜), and Zhang Lin-Xi(章林溪). Chin. Phys. B, 2009, 18(4): 1684-1690.
[12] Statistical interior properties of globular proteins
Jiang Zhou-Ting(姜舟婷), Zhang Lin-Xi(章林溪), Sun Ting-Ting(孙婷婷), and Wu Tai-Quan(吴太权). Chin. Phys. B, 2009, 18(10): 4580-4590.
[13] SAD phasing by OASIS at different resolutions down to 0.30nm and below
Yao De-Qiang(姚德强), Li He(李鹤), Chen Qiang(陈强), Gu Yuan-Xin(古元新), Zheng Chao-De(郑朝德), Lin Zheng-Jiong(林政炯), Fan Hai-Fu(范海福), Nobuhisa Watanabe(渡邉信久), and Sha Bing-Dong(沙炳东) . Chin. Phys. B, 2008, 17(1): 1-9.
[14] SIR phasing by combination of SOLVE/RESOLVE and dual-space fragment extension involving OASIS
He Yao(何尧), Gu Yuan-Xin(古元新), Lin Zheng-Jiong(林政炯), Zheng Chao-De(郑朝德), and Fan Hai-Fu(范海福). Chin. Phys. B, 2007, 16(10): 3022-3028.
No Suggested Reading articles found!