First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia
Zi Li(李孜)1, Wei-Jie Li(李伟节)1, Cong Wang(王聪)1,†, Dafang Li(李大芳)1, Wei Kang(康炜)2, Xian-Tu He(贺贤土)1,2, and Ping Zhang(张平)1,2,‡
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 2 Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Abstract The x-ray absorption spectroscopy is a powerful tool for the detection of thermodynamic conditions and atomic structures on warm dense matter. Here, we perform first-principles molecular dynamics and x-ray absorption spectrum calculations for warm dense ammonia, which is one of the major constituents of Uranus and Neptune. The nitrogen K-shell x-ray absorption spectrum (XAS) is determined along the Hugoniot curve, and it is found that the XAS is a good indicator of the prevailing thermodynamic conditions. The atomic structures at these conditions are ascertained. Results indicate that the ammonia could dissociate to NHx (x=0, 1, or 2) fragments and form nitrogen clusters, and the ratios of these products change with varying conditions. The contributions to the XAS from these products show quite different characteristics, inducing the significant change of XAS along the Hugoniot curve. Further model simulations imply that the distribution of the peak position of atomic XAS is the dominant factor affecting the total XAS.
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403200), the National Natural Science Foundation of China (Grant Nos. 11775031, 11975058, 11625415, and 11675024), and the Science Challenge Project (Grant No. TZ2016001).
Zi Li(李孜), Wei-Jie Li(李伟节), Cong Wang(王聪), Dafang Li(李大芳), Wei Kang(康炜), Xian-Tu He(贺贤土), and Ping Zhang(张平) First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia 2021 Chin. Phys. B 30 057102
[1] Hubbard W B 1981 Science214 145 [2] Hubbard W B, Nellis W J, Mitchell A C, Holmes N C, Limaye S S and McCandless P C 1991 Science253 648 [3] Redmer R, Mattsson T R, Nettelmann N and French M 2011 Icarus211 798 [4] Bethkenhagen M, Meyer E R, Hamel S, Nettelmann N, French M, Scheibe L, Ticknor C, Collins L A, Kress J D, Fortney J J and Redmer R 2017 Astrophys. J.848 67 [5] Nettelmann N, Wang K, Fortney J J, Hamel S, Yellamilli S, Bethkenhagen M and Redmer R 2016 Icarus275 107 [6] Stevenson D J 1983 Rep. Prog. Phys.46 555 [7] Stevenson D J 2010 Space Sci. Rev.152 651 [8] Nellis W J, Hamilton D C, Holmes N C, Radousky H B, Ree F H, Mitchell A C and Nicol M 1988 Science240 779 [9] Reed J W and Harris P M 1961 J. Chem. Phys.35 1730 [10] Hewat A W and Riekel C 1979 Acta Crystallogr. Sect. A35 569 [11] Eckert J, Mills R L and Satija S K 1984 J. Chem. Phys.81 6034 [12] Von Dreele R B and Hanson R C 1984 Acta Crystallogr. Sect. C40 1635 [13] Loveday J S, Nelmes R J, Marshall W G, Besson J M, Klotz S and Hamel G 1996 Phys. Rev. Lett.76 74 [14] Ninet S, Datchi F, Saitta A M, Lazzeri M and Canny B 2006 Phys. Rev. B74 104101 [15] Gauthier M, Pruzan P, Chervin J C and Besson J M 1988 Phys. Rev. B37 2102 [16] Datchi F, Ninet S, Gauthier M, Saitta A M, Canny B and Decremps F 2006 Phys. Rev. B73 174111 [17] Ninet S and Datchi F 2008 J. Chem. Phys.128 154508 [18] Ninet S, Datchi F, Klotz S, Hamel G, Loveday J S and Nelmes R J 2009 Phys. Rev. B79 100101 [19] Ninet S, Datchi F and Saitta A M 2012 Phys. Rev. Lett.108 165702 [20] Cavazzoni C, Chiarotti G L, Scandolo S, Tosatti E, Bernasconi M and Parrinello M 1999 Science283 44 [21] Ojwang J G O, Stewart McWilliams R, Ke X and Goncharov A F 2012 J. Chem. Phys.137 064507 [22] Dick R D 1981 J. Chem. Phys.74 4053 [23] Mitchell A C and Nellis W J 1982 J. Chem. Phys.76 6273 [24] Radousky H B, Mitchell A C and Nellis W J 1990 J. Chem. Phys.93 8235 [25] Nellis W J, Holmes N C, Mitchell A C, Hamilton D C and Nicol M 1997 J. Chem. Phys.107 9096 [26] Chau R, Hamel S and Nellis W J 2011 Nat. Commun.2 203 [27] Guarguaglini M, Hernandez J A, Okuchi T, Barroso P, Benuzzi-Mounaix A, Bethkenhagen M, Bolis R, Brambrink E, French M, Fujimoto Y, Kodama R, Koenig M, Lefevre F, Miyanishi K, Ozaki N, Redmer R, Sano T, Umeda Y, Vinci T and Ravasio A 2019 Sci. Rep.9 10155 [28] Bethkenhagen M, French M and Redmer R 2013 J. Chem. Phys.138 234504 [29] Li D, Wang C, Yan J, Fu Z G and Zhang P 2017 Sci. Rep.7 12338 [30] Li D, Zhang P and Yan J 2013 J. Chem. Phys.139 134505 [31] Pickard C J and Needs R J 2008 Nat. Mater.7 775 [32] Griffiths G I G, Needs R J and Pickard C J 2012 Phys. Rev. B86 144102 [33] Bradley D K, Kilkenny J, Rose S J and Hares J D 1987 Phys. Rev. Lett.59 2995 [34] Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T and Hawreliak J A 2008 Phys. Plasmas15 062703 [35] Levy A, Dorchies F, Fourment C, Harmand M, Hulin S, Santos J J, Descamps D, Petit S and Bouillaud R 2010 Rev. Sci. Instrum.81 063107 [36] Zhao Y, Yang J, Zhang J, Yang G, Wei M, Xiong G, Song T, Zhang Z, Bao L, Deng B, Li Y, He X, Li C, Mei Y, Yu R, Jiang S, Liu S, Ding Y and Zhang B 2013 Phys. Rev. Lett.111 155003 [37] Mazevet S, Recoules V, Bouchet J, Guyot F, Harmand M, Ravasio A and Benuzzi-Mounaix A 2014 Phys. Rev. B89 100103 [38] Mazevet S and Zerah G 2008 Phys. Rev. Lett.101 155001 [39] Levy A, Dorchies F, Benuzzi-Mounaix A, Ravasio A, Festa F, Recoules V, Peyrusse O, Amadou N, Brambrink E, Hall T, Koenig M and Mazevet S 2012 Phys. Rev. Lett.108 055002 [40] Zhao S, Zhang S, Kang W, Li Z, Zhang P and He X T 2015 Phys. Plasmas22 062707 [41] Douma D H, Ciprian R, Lamperti A, Lupo P, Cianci E, Sangalli D, Casoli F, Nasi L, Albertini F, Torelli P and Debernardi A 2014 Phys. Rev. B90 205201 [42] Cho B I, Engelhorn K, Correa A A, Ogitsu T, Weber C P, Lee H J, Feng J, Ni P A, Ping Y, Nelson A J, Prendergast D, Lee R W, Falcone R W and Heimann P A 2011 Phys. Rev. Lett.106 167601 [43] Manuel D, Cabaret D, Brouder C, Sainctavit P, Bordage A and Trcera N 2012 Phys. Rev. B85 224108 [44] Zhang S, Zhao S, Kang W, Zhang P and He X T 2016 Phys. Rev. B93 115114 [45] Shimada H, Fukao T, Minami H, Ukai M, Fujii K, Yokoya A, Fukuda Y and Saitoh Y 2014 J. Chem. Phys.141 055102 [46] Stevens J S, Newton L K, Jaye C, Muryn C A, Fischer D A and Schroeder S L M 2015 Cryst. Growth Des.15 1776 [47] Wang X, Hou Z, Ikeda T, Oshima M, Kakimoto M A and Terakura K 2013 J. Phys. Chem. A117 579 [48] Kresse G and Furthmuller J 1996 Phys. Rev. B54 11169 [49] Kresse G and Hafner J 1993 Phys. Rev. B47 558 [50] Blochl P E 1994 Phys. Rev. B50 17953 [51] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [52] Taillefumier M, Cabaret D, Flank A-M and Mauri F 2002 Phys. Rev. B66 195107 [53] Gougoussis C, Calandra M, Seitsonen A P and Mauri F 2009 Phys. Rev. B80 075102 [54] Paolo G, Stefano B, Nicola B, Matteo C, Roberto C, Carlo C, Davide C, Guido L C, Matteo C, Ismaila D, Andrea Dal C, Stefano de G, Stefano F, Guido F, Ralph G, Uwe G, Christos G, Anton K, Michele L, Layla M S, Nicola M, Francesco M, Riccardo M, Stefano P, Alfredo P, Lorenzo P, Carlo S, Sandro S, Gabriele S, Ari P S, Alexander S, Paolo U and Renata M W 2009 J. Phys.: Condens. Matter21 395502 [55] Troullier N and Martins J L 1991 Phys. Rev. B43 1993 [56] Li Z, Zhang S, Wang C, Kang W and Zhang P 2016 Phys. Plasmas23 053304 [57] Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M and Ajayan P M 2010 ACS Nano4 6337 [58] Li Z, Wang C, Li D, Kang W and Zhang P 2017 Phys. Plasmas24 092705
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.