CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia |
Zi Li(李孜)1, Wei-Jie Li(李伟节)1, Cong Wang(王聪)1,†, Dafang Li(李大芳)1, Wei Kang(康炜)2, Xian-Tu He(贺贤土)1,2, and Ping Zhang(张平)1,2,‡ |
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 2 Center for Applied Physics and Technology, Peking University, Beijing 100871, China |
|
|
Abstract The x-ray absorption spectroscopy is a powerful tool for the detection of thermodynamic conditions and atomic structures on warm dense matter. Here, we perform first-principles molecular dynamics and x-ray absorption spectrum calculations for warm dense ammonia, which is one of the major constituents of Uranus and Neptune. The nitrogen K-shell x-ray absorption spectrum (XAS) is determined along the Hugoniot curve, and it is found that the XAS is a good indicator of the prevailing thermodynamic conditions. The atomic structures at these conditions are ascertained. Results indicate that the ammonia could dissociate to NHx (x=0, 1, or 2) fragments and form nitrogen clusters, and the ratios of these products change with varying conditions. The contributions to the XAS from these products show quite different characteristics, inducing the significant change of XAS along the Hugoniot curve. Further model simulations imply that the distribution of the peak position of atomic XAS is the dominant factor affecting the total XAS.
|
Received: 24 November 2020
Revised: 05 January 2021
Accepted manuscript online: 13 January 2021
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
78.70.Dm
|
(X-ray absorption spectra)
|
|
61.05.cj
|
(X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403200), the National Natural Science Foundation of China (Grant Nos. 11775031, 11975058, 11625415, and 11675024), and the Science Challenge Project (Grant No. TZ2016001). |
Corresponding Authors:
Cong Wang, Ping Zhang
E-mail: wang_cong@iapcm.ac.cn;zhang_ping@iapcm.ac.cn
|
Cite this article:
Zi Li(李孜), Wei-Jie Li(李伟节), Cong Wang(王聪), Dafang Li(李大芳), Wei Kang(康炜), Xian-Tu He(贺贤土), and Ping Zhang(张平) First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia 2021 Chin. Phys. B 30 057102
|
[1] Hubbard W B 1981 Science 214 145 [2] Hubbard W B, Nellis W J, Mitchell A C, Holmes N C, Limaye S S and McCandless P C 1991 Science 253 648 [3] Redmer R, Mattsson T R, Nettelmann N and French M 2011 Icarus 211 798 [4] Bethkenhagen M, Meyer E R, Hamel S, Nettelmann N, French M, Scheibe L, Ticknor C, Collins L A, Kress J D, Fortney J J and Redmer R 2017 Astrophys. J. 848 67 [5] Nettelmann N, Wang K, Fortney J J, Hamel S, Yellamilli S, Bethkenhagen M and Redmer R 2016 Icarus 275 107 [6] Stevenson D J 1983 Rep. Prog. Phys. 46 555 [7] Stevenson D J 2010 Space Sci. Rev. 152 651 [8] Nellis W J, Hamilton D C, Holmes N C, Radousky H B, Ree F H, Mitchell A C and Nicol M 1988 Science 240 779 [9] Reed J W and Harris P M 1961 J. Chem. Phys. 35 1730 [10] Hewat A W and Riekel C 1979 Acta Crystallogr. Sect. A 35 569 [11] Eckert J, Mills R L and Satija S K 1984 J. Chem. Phys. 81 6034 [12] Von Dreele R B and Hanson R C 1984 Acta Crystallogr. Sect. C 40 1635 [13] Loveday J S, Nelmes R J, Marshall W G, Besson J M, Klotz S and Hamel G 1996 Phys. Rev. Lett. 76 74 [14] Ninet S, Datchi F, Saitta A M, Lazzeri M and Canny B 2006 Phys. Rev. B 74 104101 [15] Gauthier M, Pruzan P, Chervin J C and Besson J M 1988 Phys. Rev. B 37 2102 [16] Datchi F, Ninet S, Gauthier M, Saitta A M, Canny B and Decremps F 2006 Phys. Rev. B 73 174111 [17] Ninet S and Datchi F 2008 J. Chem. Phys. 128 154508 [18] Ninet S, Datchi F, Klotz S, Hamel G, Loveday J S and Nelmes R J 2009 Phys. Rev. B 79 100101 [19] Ninet S, Datchi F and Saitta A M 2012 Phys. Rev. Lett. 108 165702 [20] Cavazzoni C, Chiarotti G L, Scandolo S, Tosatti E, Bernasconi M and Parrinello M 1999 Science 283 44 [21] Ojwang J G O, Stewart McWilliams R, Ke X and Goncharov A F 2012 J. Chem. Phys. 137 064507 [22] Dick R D 1981 J. Chem. Phys. 74 4053 [23] Mitchell A C and Nellis W J 1982 J. Chem. Phys. 76 6273 [24] Radousky H B, Mitchell A C and Nellis W J 1990 J. Chem. Phys. 93 8235 [25] Nellis W J, Holmes N C, Mitchell A C, Hamilton D C and Nicol M 1997 J. Chem. Phys. 107 9096 [26] Chau R, Hamel S and Nellis W J 2011 Nat. Commun. 2 203 [27] Guarguaglini M, Hernandez J A, Okuchi T, Barroso P, Benuzzi-Mounaix A, Bethkenhagen M, Bolis R, Brambrink E, French M, Fujimoto Y, Kodama R, Koenig M, Lefevre F, Miyanishi K, Ozaki N, Redmer R, Sano T, Umeda Y, Vinci T and Ravasio A 2019 Sci. Rep. 9 10155 [28] Bethkenhagen M, French M and Redmer R 2013 J. Chem. Phys. 138 234504 [29] Li D, Wang C, Yan J, Fu Z G and Zhang P 2017 Sci. Rep. 7 12338 [30] Li D, Zhang P and Yan J 2013 J. Chem. Phys. 139 134505 [31] Pickard C J and Needs R J 2008 Nat. Mater. 7 775 [32] Griffiths G I G, Needs R J and Pickard C J 2012 Phys. Rev. B 86 144102 [33] Bradley D K, Kilkenny J, Rose S J and Hares J D 1987 Phys. Rev. Lett. 59 2995 [34] Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T and Hawreliak J A 2008 Phys. Plasmas 15 062703 [35] Levy A, Dorchies F, Fourment C, Harmand M, Hulin S, Santos J J, Descamps D, Petit S and Bouillaud R 2010 Rev. Sci. Instrum. 81 063107 [36] Zhao Y, Yang J, Zhang J, Yang G, Wei M, Xiong G, Song T, Zhang Z, Bao L, Deng B, Li Y, He X, Li C, Mei Y, Yu R, Jiang S, Liu S, Ding Y and Zhang B 2013 Phys. Rev. Lett. 111 155003 [37] Mazevet S, Recoules V, Bouchet J, Guyot F, Harmand M, Ravasio A and Benuzzi-Mounaix A 2014 Phys. Rev. B 89 100103 [38] Mazevet S and Zerah G 2008 Phys. Rev. Lett. 101 155001 [39] Levy A, Dorchies F, Benuzzi-Mounaix A, Ravasio A, Festa F, Recoules V, Peyrusse O, Amadou N, Brambrink E, Hall T, Koenig M and Mazevet S 2012 Phys. Rev. Lett. 108 055002 [40] Zhao S, Zhang S, Kang W, Li Z, Zhang P and He X T 2015 Phys. Plasmas 22 062707 [41] Douma D H, Ciprian R, Lamperti A, Lupo P, Cianci E, Sangalli D, Casoli F, Nasi L, Albertini F, Torelli P and Debernardi A 2014 Phys. Rev. B 90 205201 [42] Cho B I, Engelhorn K, Correa A A, Ogitsu T, Weber C P, Lee H J, Feng J, Ni P A, Ping Y, Nelson A J, Prendergast D, Lee R W, Falcone R W and Heimann P A 2011 Phys. Rev. Lett. 106 167601 [43] Manuel D, Cabaret D, Brouder C, Sainctavit P, Bordage A and Trcera N 2012 Phys. Rev. B 85 224108 [44] Zhang S, Zhao S, Kang W, Zhang P and He X T 2016 Phys. Rev. B 93 115114 [45] Shimada H, Fukao T, Minami H, Ukai M, Fujii K, Yokoya A, Fukuda Y and Saitoh Y 2014 J. Chem. Phys. 141 055102 [46] Stevens J S, Newton L K, Jaye C, Muryn C A, Fischer D A and Schroeder S L M 2015 Cryst. Growth Des. 15 1776 [47] Wang X, Hou Z, Ikeda T, Oshima M, Kakimoto M A and Terakura K 2013 J. Phys. Chem. A 117 579 [48] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [49] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [50] Blochl P E 1994 Phys. Rev. B 50 17953 [51] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [52] Taillefumier M, Cabaret D, Flank A-M and Mauri F 2002 Phys. Rev. B 66 195107 [53] Gougoussis C, Calandra M, Seitsonen A P and Mauri F 2009 Phys. Rev. B 80 075102 [54] Paolo G, Stefano B, Nicola B, Matteo C, Roberto C, Carlo C, Davide C, Guido L C, Matteo C, Ismaila D, Andrea Dal C, Stefano de G, Stefano F, Guido F, Ralph G, Uwe G, Christos G, Anton K, Michele L, Layla M S, Nicola M, Francesco M, Riccardo M, Stefano P, Alfredo P, Lorenzo P, Carlo S, Sandro S, Gabriele S, Ari P S, Alexander S, Paolo U and Renata M W 2009 J. Phys.: Condens. Matter 21 395502 [55] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993 [56] Li Z, Zhang S, Wang C, Kang W and Zhang P 2016 Phys. Plasmas 23 053304 [57] Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M and Ajayan P M 2010 ACS Nano 4 6337 [58] Li Z, Wang C, Li D, Kang W and Zhang P 2017 Phys. Plasmas 24 092705 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|