Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 064209    DOI: 10.1088/1674-1056/abda2b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity

Long-Pan Wang(汪陇盼)1, Cheng Ren(任承)1,†, De-Zhong Cao(曹德忠)1, Rui-Jun Lan(兰瑞君)1, and Feng Kang(康凤)2
1 School of Opto-Electronic Information Science and Technology, Yantai University, Yantai 264005, China;
2 Wenjing College, Yantai University, Yantai 264005, China
Abstract  Silicon-based electro-optic modulators are the key devices in integrated optoelectronics. Integration of the graphene layer and the photonic crystal (PC) cavity is a promising way of achieving compact modulators with high efficiency. In this paper, a high-quality (Q) acceptor-type PC nanocavity is employed to integrate with a single-layer graphene for realizing strong modulation. Through tuning the chemical potential of graphene, a large wavelength shift of 2.62 nm and a Q factor modulation of larger than 5 are achieved. A modulation depth (12.8 dB) of the reflection spectrum is also obtained. Moreover, the optimized PC nanocavity has a large free spectral range of 131.59 nm, which can effectively enhance the flexibility of the modulator. It shows that the proposed graphene-based PC nanocavity is a potential candidate for compact, high-contrast, and low-power absorptive modulators in integrated silicon chips.
Keywords:  graphene      photonic crystal nanocavity      tunable  
Received:  29 September 2020      Revised:  08 January 2021      Accepted manuscript online:  11 January 2021
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.82.Gw (Other integrated-optical elements and systems)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674273) and the Science and Technology Plan Projects of Colleges and Universities of Shandong Province, China (Grant No. J15LJ52).
Corresponding Authors:  Cheng Ren     E-mail:  cren@ytu.edu.cn

Cite this article: 

Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤) Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity 2021 Chin. Phys. B 30 064209

[1] Chen L, Preston K, Manipatruni S and Lipson M 2009 Opt. Express 17 15248
[2] Tanabe T, Nishiguchi K, Kuramochi E and Notomi M 2009 Opt. Express 17 22505
[3] Shakoor A, Nozaki K, Kuramochi E, Nishiguchi K, Shinya A and Notomi M 2014 Opt. Express 22 28623
[4] Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T and Mueller T 2018 Nature 562 101
[5] Hanson G W 2008 J. Appl. Phys. 103 064302
[6] Stauber T, Peres N M R and Guinea F 2007 Phys. Rev. B 76 205423
[7] Falkovsky L A 2008 J. Phys.: Conf. Ser. 129 012004
[8] Tan Y W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H, Sarma S D, Stormer H L and Kim P 2007 Phys. Rev. Lett. 99 246803
[9] Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T and Mueller T 2013 Nat. Photon. 7 892
[10] Qiu C, Gao W, Vajtai R, Ajayan P M, Kono J and Xu Q 2014 Nano Lett. 14 6811
[11] Du W, Li E P and Hao R 2014 IEEE Photon. Technol. Lett. 26 2008
[12] Hu Y, Pantouvaki M, Campenhout J V, Brems S, Asselberghs I, Huyghebaert C, Absil P and Thourhout D V 2016 Laser Photon. Rev. 10 307
[13] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
[14] Ye S W, Yuan F, Zou X H, Shah M K, Lu R G and Liu Y 2017 IEEE J. Sel. Top. Quantum Electron. 23 3400105
[15] Liu M, Yin X and Zhang X 2012 Nano Lett. 12 1482
[16] Du L, Li Q, Li S, Hu, F, Xiong X, Li Y, Zhang W and Han J 2016 Chin. Phys. B 25 027301
[17] Jiang R, Wu Z, Han Z and Jung H 2016 Chin. Phys. B 25 106803
[18] Majumdar A, Kim J, Vuckovic J and Wang F 2013 Nano Lett. 13 515
[19] Gan X, Shiue R, Gao Y, Mak K F, Yao X, Li L, Szep A, Walker D J, Hone J, Heinz T F and Englund D 2013 Nano Lett. 13 691
[20] Chiba H and Notomi M 2019 Opt. Express 27 37952
[21] Gan X, Mak K F, Gao Y, You Y, Hatami F, Hone J, Heinz T F and Englund D 2012 Nano Lett. 12 5626
[22] Pan T, Qiu C, Wu J, Jiang X, Liu B, Yang Y, Zhou H, Soref R and Su Y 2015 Opt. Express 23 23357
[23] Akahane Y, Mochizuki M, Asano T, Tanaka Y and Noda S 2003 Appl. Phys. Lett. 82 1341
[24] Akahane Y, Asano T, Song B S and Noda S 2005 Opt. Express 13 1202
[25] Asano T, Ochi Y, Takahashi Y, Kishimoto K and Noda S 2017 Opt. Express 25 1769
[26] Du W, Hao R and Li E 2014 Opt. Commun. 323 49
[27] Pan T, Qiu C, Wu J, Jiang X, Liu B, Yang Y, Zhou H, Soref R and Su Y 2015 Opt. Express 23 23357
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[13] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[14] Temperature-responded tunable metalenses based on phase transition materials
Jing-Jun Wu(伍景军), Feng Tang(唐烽), Jun Ma(马骏), Bing Han(韩冰), Cong Wei(魏聪), Qing-Zhi Li(李青芝), Jun Chen(陈骏), Ning Zhang(张宁), Xin Ye(叶鑫), Wan-Guo Zheng(郑万国), and Ri-Hong Zhu(朱日宏). Chin. Phys. B, 2022, 31(5): 054216.
[15] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
No Suggested Reading articles found!