Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 058504    DOI: 10.1088/1674-1056/ac464d

Thermionic electron emission in the 1D edge-to-edge limit

Tongyao Zhang(张桐耀)1,2, Hanwen Wang(王汉文)3, Xiuxin Xia(夏秀鑫)3, Chengbing Qin(秦成兵)2,4, and Xiaoxi Li(李小茜)1,2,†
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
4 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
Abstract  Thermionic emission is a tunneling phenomenon, which depicts that electrons on the surface of a conductor can be pulled out into the vacuum when they are subjected to high electrical tensions while being heated hot enough to overtake their work functions. This principle has led to the great success of the so-called vacuum tubes in the early 20th century. To date, major challenges still remain in the miniaturization of a vacuum channel transistor for on-chip integration in modern solid-state integrated circuits. Here, by introducing nano-sized vacuum gaps (~ 200 nm) in a van der Waals heterostructure, we successfully fabricated a one-dimensional (1D) edge-to-edge thermionic emission vacuum tube using graphene as the filament. With the increasing collector voltage, the emitted current exhibits a typical rectifying behavior, with the maximum emission current reaching 200 pA and an ON-OFF ratio of 103. In addition, it is found that the maximum emission current is proportional to the number of the layers of graphene. Our results expand the research of nano-sized vacuum tubes to an unexplored physical limit of 1D edge-to-edge emission, and hold great promise for future nano-electronic systems based on it.
Keywords:  vacuum microelectronics      thermionic emission      graphene      electronic transport in nanoscale materials and structures  
Received:  19 October 2021      Revised:  22 December 2021      Accepted manuscript online: 
PACS:  85.45.-w (Vacuum microelectronics)  
  81.05.ue (Graphene)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  79.40.+z (Thermionic emission)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos.12004389,12004288,and 12104462) and the China Postdoctoral Science Foundation (Grant Nos.2020M68036 and 2021T140430).Xiaoxi Li acknowledges the support from the Joint Research Fund of Liaoning-Shenyang National Laboratory for Materials Science (Grant No.2019JH3/30100031).Hanwen Wang acknowledges the support from the IMR Innovation Fund (Grant No.2021-PY17).
Corresponding Authors:  Xiaoxi Li,     E-mail:
About author:  2021-12-24

Cite this article: 

Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜) Thermionic electron emission in the 1D edge-to-edge limit 2022 Chin. Phys. B 31 058504

[1] Stoner B R and Glass J T 2012 Nat. Nanotechnol. 7 485
[2] Liu Z, Yang G, Lee Y Z, Bordelon D, Lu J and Zhou O 2006 Appl. Phys. Lett. 89 103111
[3] Yue G Z, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H, Chang S, Lu J P and Zhou O 2002 Appl. Phys. Lett. 81 355
[4] Modi A, Koratkar N, Lass E, Wei B and Ajayan P M 2003 Nature 424 171
[5] Jariwala D, Sangwan V K, Lauhon L J, Marksab T J and Hersam M C 2012 Chem. Soc. Rev. 42 2824
[6] Liu P, Wei Y, Liu K, Liu L, Jiang K and Fan S 2012 Nano Lett. 12 2391
[7] Wang Q H, Setlur A A, Lauerhaas J M, Dai J Y, Seelig E W and Chang R P H 1998 Appl. Phys. Lett. 72 2912
[8] Han J W, Oh J S and Meyyappan M 2012 Appl. Phys. Lett. 100 213505
[9] Spindt C 2012 IEEE 25th International Vacuum Nanoelectronics Conference, July 9-13, 2012, Jeju, South Korea
[10] Gaertner G 2012 J. Vacuum Sci. Technol. B 30 060801
[11] Spindt C A 1968 J. Appl. Phys. 39 3504
[12] Spindt C A, Brodie I, Humphrey L and Westerberg E R 1976 J. Appl. Phys. 47 5248
[13] Chang W T, Hsu H J and Pao P H 2019 Micromachines 10 858
[14] Han J W, Seol M L, Moon D I, Hunter G and Meyyappan M 2019 Nat. Electron. 2 405
[15] Han J W, Moon D I and Meyyappan M 2017 Nano Lett. 17 2146
[16] Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M and Zhang H 2017 Chem. Rev. 117 6225
[17] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768
[18] Luo F, Fan Y, Peng G, Xu S, Yang Y, Yuan K, Liu J, Ma W, Xu W, Zhu Z H, Zhang X, Mishchenko A, Ye Y, Huang H, Han Z, Ren W, Novoselov K S, Zhu M and Qin S 2019 ACS Photon. 6 2117
[19] Kim Y D, Kim H, Cho Y, Ryoo J H, Park C H, Kim P, Kim Y S, Lee S, Li Y, Park S N, Shim Y Y, Yoon D, Dorgan V E, Pop E, Heinz T F, Hone J, Chun S H, Cheong H, Lee S W, Bae M H and Park Y D 2015 Nat. Nanotechnol. 10 676
[20] Dobusch L, Schuler S, Perebeinos V and Mueller T 2017 Adv. Mater. 29 1701304
[21] Shiue R J, Gao Y, Tan C, Peng C, Zheng J, Efetov D K, Kim Y D, Hone J and Englund D 2019 Nat. Commun. 10 109
[22] Xu J, Gu Z Y, Yang W X, Wang Q L and Zhang X B 2018 Nanoscale Res. Lett. 13 311
[23] Wu G, Wei X, Zhang Z, Chen Q and Peng L 2015 Adv. Function. Mater. 25 5972
[24] Wu G, Wei X, Gao S, Chen Q and Peng L 2016 Nat. Commun. 7 11513
[25] Wu G, Li Z, Tang Z, Wei D, Zhang G, Chen Q, Peng L and Wei X 2018 Adv. Electron. Mater. 4 1800136
[26] Bartolomeo A D, Urban F, Passacantando M, McEvoy N, Peters L, Iemmo L, Luongo G, Romeo F and Giubileo F A 2019 Nanoscale 11 1538
[27] Richardson O W 2003 Thermionic emission from hot bodies (Akure: Wexford College Press)
[28] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R 2013 Science 342 614
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[14] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[15] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
No Suggested Reading articles found!