Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 064208    DOI: 10.1088/1674-1056/abdda9
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices

Pankaj Kumar Tripathi1,†, Kunwar Vikram2, Mithlesh Tiwari3, and Ajay Shriram4
1 Department of Physics, Lovely Professional University, Phagwara-144411, Punjab, India;
2 Department of Allied Science, Graphic Era(Deemed to be university), Dehradun-248002 India;
3 Department of Physics and Electronics, Dr. Ram Manohar Lohia Avadh University, Ayodhya-224001, U. P., India;
4 School of Computer Science & Information Technology, Jain(Deemed-to-be-University), Bengaluru-560069, Karnataka, India
Abstract  The dielectric properties of the nematic mesophase, p-methoxy benzylidene p-decyl aniline (MBDA), measured in planar geometry with a function of frequency and temperature are investigated in detail. The complex dielectric permittivity (ε' and ε″) is also studied at a bias voltage of 10 V for planar aligned sample cell of nematic mesophase. The dielectric permittivity with bias voltage attains a higher (> 2 times) value than that without bias voltage at a temperature of 56℃, which is due to the fact that the linking group of nematic molecules is internally interacted with an applied bias voltage. This is supported by observing an enhanced dielectric permittivity of nematic liquid crystal (LC) in the presence of bias voltage, which can be fully explained as the increasing of the corresponding dipole moment. The dielectric relaxation behaviors of nematic LC are also demonstrated for planar aligned sample cell. The remarkable results are observed that the relaxation frequency shifts into low frequency region with the increase of the bias voltage applied to the planar aligned sample cells. The dielectric relaxation spectra are fitted by Cole-Cole nonlinear curve fitting for nematic mesophase in order to determine the dielectric strength.
Keywords:  dielectric permittivity      dielectric loss      relaxation frequency      nematic mesogen  
Received:  15 October 2020      Revised:  29 December 2020      Accepted manuscript online:  20 January 2021
PACS:  42.70.Df (Liquid crystals)  
  42.79.Kr (Display devices, liquid-crystal devices)  
  51.70.+f (Optical and dielectric properties)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Corresponding Authors:  Pankaj Kumar Tripathi     E-mail:  pankajtripathi19@gmail.com

Cite this article: 

Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices 2021 Chin. Phys. B 30 064208

[1] Blinov L M and Chigrinov V G 1994 Electrooptic Effects in Liquid Crystal Materials (New York: Springer)
[2] de Jeu W H 1978 Liquid Crystals edited by L Liebert (New York: Academic)
[3] Koezuka H, Kanegae H, Ono H and Sibayama K 1982 J. Appl. Phys. 53 496
[4] Naito H, Yokoyama Y, Murakami S, Imai M, Okuda M and Sugimura A 1995 Mol. Cryst. Liq. Cryst. 262 249
[5] Meeker S P, Poon W C K, Crain J and Terentjev E M 2000 Phys. Rev. E 61 6083
[6] Anderson V J, Terentjev E M, Meeker S P, Crain J and Poon W C K 2001 Eur. Phys. J. E 4 11
[7] Takahashi S 1991 J. Appl. Phys. 70 5346
[8] Köysal O, Okutan M and Gökçen M 2011 Opt. Commun. 284 4924
[9] Okutan M, Yakuphanoglu F, Sana S E adn Köysal O 2005 Physica B 368 308
[10] Okutan M, Yakuphanoglu F, Köysal O, Durmuş M and Ahsen V 2007 Acta Part A 67 531
[11] Al-Hazmi F, Al-Ghamdi A, Al-Senany N, Alnowaiser F and Yakuphanoglu F 2014 Composites Part B 56 15
[12] Yadav S P, Manohar R and Singh S 2015 Liq. Cryst. 42 1095
[13] Tripathi P K, Roy A, Misra A K, Pandey K K, Manohar R and Negi Y S 2020 Liq. Cryst. Doi: 10.1080/02678292.2020.1821918
[14] Zou Z F, Yao L S, Tang X Z, Ji X J and Xuan L 2008 Chin. Phys. Lett. 25 2524
[15] Huang C F and Guo Q 2007 Chin. Phys. Lett. 24 1279
[16] Cao L G, Zheng Y J, Hu W, Yang P B and Guo Q 2009 Chin. Phys. Lett. 26 064209
[17] Peng Z H, Wang Q D, Wang S X, et al. 2017 Chin. Phys. B 26 094210
[18] Belyaev V V, Chausov D N, Kurilov A D, Rybakov D O, Solomatin A S, Murauski A A, Muravsky A A, Chigrinov V G and Fan F 2015 J. SID 23 403
[19] de Jeu W H and Lathouwers T W 1974 Z. Naturforsch. 29a 905
[20] Ren C Y, Shi H X, Ai Y B, et al., 2016 Chin. Phys. B 25 094218
[21] Blinov L M 2011 Structure and Properties of Liquid Crystals (Springer)
[22] Iwamoto M J 1995 Appl. Phys. 77 5314
[23] Tripathi P K, Manohar R and Singh S 2016 Mol. Cryst. Liq. Cryst. 626 160
[24] Cole K S 1941 Cole J. Chem. Phys. 9 341
[25] Tripathi P K, Yadav S P and Singh S 2018 Liq. Crys. 45 953
[26] Tripathi P K, Misra A K, Manohar S, Gupta S K and Manohar R 2013 J. Mol. Stru. 1035 371
[27] Kremer F and Schönhals A 2003 Broadband Dielectric Spectroscopy (Berlin-Heidelberg: Springer-Verlag)
[28] Yin Y, Shiyanovskii S V and Lavrentovich O D 2006 J. Appl. Phys. 100 024906
[29] Das M K, Barman B, Das B, Hamplová V and Bubnov A 2019 Cryst. 9 473
[30] Uttam R, Yadav N, Kumar S and Dhar R 2019 J. Mole. Liq. 294 111609
[32] Hill N E Vaugan W E Price A H Davis M 1969 Dielectric properties and molecular Behaviour (London: Von Nostrand Reinhold Co.)
[33] Smyth C P 1995 Dielectric behaviour and structure (New York: McGraw Hill)
[1] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[2] Structural and dielectric properties of giant dielectric Na1/2Sm1/2Cu3Ti4O12 ceramics prepared by reactive sintering methods
H Mahfoz Kotb. Chin. Phys. B, 2019, 28(9): 098202.
[3] Opto propeller effect on Micro-Rotors with different handedness
Yiwen Tang(唐怡闻), Zhibing Li(李志兵). Chin. Phys. B, 2019, 28(8): 084702.
[4] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[5] Lattice dynamics properties of chalcopyrite ZnSnP2: Density-functional calculations by using a linear response theory
You Yu(虞游), Yu-Jing Dong(董玉静), Yan-Hong Shen(沈艳红), Guo-Dong Zhao(赵国栋), Xiao-Lin Zheng(郑小林), Jia-Nan Sheng(盛佳南). Chin. Phys. B, 2017, 26(4): 046302.
[6] Field-induced phase transitions in chiral smectic liquid crystals studied by the constant current method
H Dhaouadi, R Zgueb, O Riahi, F Trabelsi, T Othman. Chin. Phys. B, 2016, 25(5): 057704.
[7] Electrical and dielectric properties of Na1/2La1/2Cu3Ti4O12 ceramics prepared by high energy ball-milling and conventional sintering
H Mahfoz Kotb, Mohamad M Ahmad. Chin. Phys. B, 2016, 25(12): 128201.
[8] Novel attributes and design considerations of effective oxide thickness in nano DG MOSFETs
Morteza Charmi. Chin. Phys. B, 2015, 24(4): 047302.
[9] Dielectric loss of half-doped manganite La0.5Ca0.5MnO3
Cao Xian-Sheng (曹先胜), Ji Gao-Feng (吉高峰), Luo Bing-Cheng (罗炳成), Li Feng (李峰). Chin. Phys. B, 2013, 22(8): 087702.
[10] Temperature-frequency dependence and mechanism of dielectric properties for $\gamma$-Y2Si2O7
Hou Zhi-Ling(侯志灵), Cao Mao-Sheng(曹茂盛), Yuan Jie(袁杰), and Song Wei-Li(宋维力). Chin. Phys. B, 2010, 19(1): 017702.
No Suggested Reading articles found!