Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 054216    DOI: 10.1088/1674-1056/ac3cad
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Temperature-responded tunable metalenses based on phase transition materials

Jing-Jun Wu(伍景军)1,2,3, Feng Tang(唐烽)3, Jun Ma(马骏)1,2, Bing Han(韩冰)1,2, Cong Wei(魏聪)1,2, Qing-Zhi Li(李青芝)3, Jun Chen(陈骏)3, Ning Zhang(张宁)3, Xin Ye(叶鑫)3,†, Wan-Guo Zheng(郑万国)4,‡, and Ri-Hong Zhu(朱日宏)1,2,§
1 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2 MIIT Key Laboratory of Advanced Solid Laser, Nanjing University of Science and Technology, Nanjing 210094, China;
3 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;
4 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  Once the metalenses are fabricated, the functions of most metalenses are invariable. The tunability and reconfigurability are useful and cost-saving for metalenses in realistic applications. We demonstrate this tunability here via a novel hybrid metalens with the strategic placement of an ultra-thin VO2 layer. The hybrid metalens is capable of dynamically modulating the focusing intensity of transmitted light at a wavelength of 1550 nm, and demonstrate a 42.28% focusing efficiency of the incident light and 70.01% modulation efficiency. The hybrid metalens' optothermal simulations show an optothermal conversion process of dynamic focusing, and a maximum laser density of 1.76×103 W/cm2 can be handled at an ambient temperature lower than 330 K. The hybrid metalens proposed in this work, a light-dose sensitive tunable smart metalens that can protect other instruments/systems or materials from being damaged, has its specific applications such as in anti-satellite blinding, bio-imaging, etc.
Keywords:  temperature-responded      tunable metalenses      phase change material VO2  
Received:  26 August 2021      Revised:  15 November 2021      Accepted manuscript online: 
PACS:  42.79.Wc (Optical coatings)  
  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
  42.70.-a (Optical materials)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61875087) and the Innovation and Development Foundation of China Academy of Engineering Physics (Grant No.CX20200020).
Corresponding Authors:  Xin Ye,E-mail:yexin@caep.cn;Wan-Guo Zheng,E-mail:group ye@163.com;Ri-Hong Zhu,E-mail:zhurihong@njust.edu.cn     E-mail:  yexin@caep.cn;group_ye@163.com;zhurihong@njust.edu.cn
About author:  2021-11-24

Cite this article: 

Jing-Jun Wu(伍景军), Feng Tang(唐烽), Jun Ma(马骏), Bing Han(韩冰), Cong Wei(魏聪), Qing-Zhi Li(李青芝), Jun Chen(陈骏), Ning Zhang(张宁), Xin Ye(叶鑫), Wan-Guo Zheng(郑万国), and Ri-Hong Zhu(朱日宏) Temperature-responded tunable metalenses based on phase transition materials 2022 Chin. Phys. B 31 054216

[1] Liu W, Cheng H, Tian J and Chen S 2020 Adv. Phys. X 5 1742584
[2] Chen S, Li Z, Liu W, Cheng H and Tian J 2019 Adv. Mater. 31 1802458
[3] He Q, Sun S and Zhou L 2019 Research 2 1849272
[4] Ou J Y, Plum E, Zhang J and Zheludev N I 2013 Nat. Nanotechnol. 8 252
[5] Zheludev N I and Plum E 2016 Nat. Nanotechnol. 11 16
[6] Tao H, Strikwerda A C, Fan K, Padilla W J, Zhang X and Averitt R D 2009 Phys. Rev. Lett. 103 147401
[7] Khodasevych I E, Shah C M, Sriram S, Bhaskaran M, Withayachumnankul W, Ung B S Y, Lin H, Rowe W S T, Abbott D and Mitchell A 2012 Appl. Phys. Lett. 100 061101
[8] Ou J Y, Plum E, Jiang L and Zheludev N I 2011 Nano Lett. 11 2142
[9] Zhu W M, Liu A Q, Zhang X M, Tsai D P, Bourouina T, Teng J H, Zhang X H, Guo H C, Tanoto H, Mei T, Lo G Q and Kwong D L 2011 Adv. Mater. 23 1792
[10] Fu Y H, Liu A Q, Zhu W M, Zhang X M, Tsai D P, Zhang J B, Mei T, Tao J F, Guo H C, Zhang X H, Teng J H, Zheludev N I, Lo G Q and Kwong D L 2011 Adv. Funct. Mater. 21 3589
[11] Powell D A, Hannam K, Shadrivov I V and Kivshar Y S 2011 Phys. Rev. B 83 235420
[12] Tseng M L, Hsiao H H, Chu C H, Chen M K, Sun G, Liu A Q and Tsai D P 2018 Adv. Opt. Mater. 6 1800554
[13] Cui T, Bai B and Sun H B 2019 Adv. Funct. Mater. 29 1806692
[14] Liu H, Lu J and Wang X R 2017 Nanot. 29 024002
[15] Forouzmand A, Salary M M, Kafaie Shirmanesh G, Sokhoyan R, Atwater H A and Mosallaei H 2019 Nanophotonics 8 415
[16] Choudhury S M, Wang D, Chaudhuri K, DeVault C, Kildishev A V, Boltasseva A and Shalaev V M 2018 Nanophotonics 7 959
[17] Yin X H, Steinle T, Huang L L, Taubner T and Wuttig M 2017 Light-Sci. Appl. 6 e17016
[18] Bai W, Yang P, Wang S, Huang J, Chen D, Zhang Z, Yang J and Xu B 2019 Appl. Sci. 9 4927
[19] Bai W, Yang P, Wang S, Huang J, Chen D, Zhang Z, Yang J and Xu B 2019 Nanomaterials 9 993
[20] Chen L, Hao Y, Zhao L, Wu R, Liu Y, Wei Z, Xu N, Li Z and Liu H 2021 Opt. Express 29 9332
[21] Chen W, Chen R, Zhou Y and Ma Y 2019 IEEE Photon. Tech. Lett. 31 1187
[22] Wu J, Tang F, Ma J, Li Q, Shang S, Chen J, Wu Y, Wang Y, Ye X, Zheng W and Zhu R 2020 Results Phys. 18 103226
[23] Butakov N A, Valmianski I, Lewi T, Urban C, Ren Z, Mikhailovsky A A, Wilson S D, Schuller I K and Schuller J A 2017 ACS Photon. 5 371
[24] Rodriguez-Vega M, Simons M T, Radue E, Kittiwatanakul S, Lu J, Wolf S A, Lukaszew R A, Novikova I and Rossi E 2015 Phys. Rev. B 92 115420
[25] Ordonez-Miranda J, Ezzahri Y, Joulain K, Drevillon J and Alvarado-Gil J J 2018 Phys. Rev. B 98 075144
[26] Palik and Edward D 1985 Handbook of optical constants of solids (Maryland: Academic Press) pp. 554-769
[27] Shang S, Tang F, Ye X, Li Q, Li H, Wu J, Wu Y, Chen J, Zhang Z, Yang Y and Zheng W 2020 Nanomaterials 10 103215
[28] Tang F, Ye X, Li Q, Wang Y, Yu H, Wu W, Li B and Zheng W 2020 Results Phys. 18 103215
[1] High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system
Wenjia Yuan(袁文佳), Weidong Shen(沈伟东), Chen Xie(谢辰), Chenying Yang(杨陈楹), and Yueguang Zhang(章岳光). Chin. Phys. B, 2022, 31(8): 087801.
[2] Influence of low-temperature sulfidation on the structure of ZnS thin films
Shuzhen Chen(陈书真), Ligang Song(宋力刚), Peng Zhang(张鹏), Xingzhong Cao(曹兴忠), Runsheng Yu(于润升), Baoyi Wang(王宝义), Long Wei(魏龙), Rengang Zhang(张仁刚). Chin. Phys. B, 2019, 28(2): 024214.
[3] Laser-induced damage threshold in HfO2/SiO2 multilayer films irradiated by β-ray
Mei-Hua Fang(方美华), Peng-Yu Tian(田鹏宇), Mao-Dong Zhu(朱茂东), Hong-Ji Qi(齐红基), Tao Fei(费涛), Jin-Peng Lv(吕金鹏), Hui-Ping Liu(刘会平). Chin. Phys. B, 2019, 28(2): 024215.
[4] Experimental demonstration of narrow-band rugate minus filters using rapidly alternating deposition technology
Ying Zhang(章瑛), Yan-Zhi Wang(王胭脂), Jiao-Ling Zhao(赵娇玲), Jian-Da Shao(邵建达), Shuang-Chen Ruan(阮双琛). Chin. Phys. B, 2018, 27(5): 054217.
[5] Fabrication of broadband antireflection coatings using broadband optical monitoring mixed with time monitoring
Qi-Peng Lv(吕起鹏), Song-Wen Deng(邓淞文), Shao-Qian Zhang(张绍骞), Fa-Quan Gong(公发全), Gang Li(李刚). Chin. Phys. B, 2017, 26(5): 057801.
[6] Effects of annealing time on the structure, morphology and stress of gold-chromium bilayer film
Hong Zhang(张洪), Yun-Xia Jin(晋云霞), Hu Wang(王虎), Fang-Yu Kong(孔钒宇), Hao-Peng Huang(黄昊鹏), Yun Cui(崔云). Chin. Phys. B, 2016, 25(10): 104205.
[7] Analysis of the spatial filter of a dielectric multilayer film reflective cutoff filter-combination device
Zhang Ying (章瑛), Qi Hong-Ji (齐红基), Yi Kui (易葵), Wang Yan-Zhi (王胭脂), Sui Zhan (隋展), Shao Jian-Da (邵建达). Chin. Phys. B, 2015, 24(10): 104216.
[8] An improved transmitting multi-layer thin-film filter
Zhang Ying (章瑛), Qi Hong-Ji (齐红基), Yi Kui (易葵), Wang Yan-Zhi (王胭脂), Sui Zhan (隋展), Shao Jian-Da (邵建达). Chin. Phys. B, 2015, 24(5): 054212.
[9] High-efficiency focusing grating coupler with optimized ultra-short taper
Yang Biao (杨彪), Li Zhi-Yong (李智勇), Yu Yu-De (俞育德), Yu Jin-Zhong (余金中). Chin. Phys. B, 2014, 23(11): 114206.
[10] Wide-angle and broadband graded-refractive-index antireflection coatings
Zhang Jun-Chao (张俊超), Xiong Li-Min (熊利民), Fang Ming (方明), He Hong-Bo (贺洪波). Chin. Phys. B, 2013, 22(4): 044201.
[11] Infrared emissivities of Mn, Co co-doped ZnO powders
Yao Yin-Hua (姚银华), Cao Quan-Xi (曹全喜). Chin. Phys. B, 2012, 21(12): 124205.
[12] Broadband non-polarizing beam splitter based on guided mode resonance effect
Ma Jian-Yong(麻健勇), Xu Cheng(许程), Qiang Ying-Huai(强颖怀), and Zhu Ya-Bo(朱亚波) . Chin. Phys. B, 2011, 20(10): 104209.
[13] Excellent polarization-independent reflector based on guided mode resonance effect
Xu Cheng(许程), Xu Lin-Min(许林敏), Qiang Ying-Huai(强颖怀), Zhu Ya-Bo(朱亚波), Liu Jiong-Tian(刘炯天), and Ma Jian-Yong(麻健勇) . Chin. Phys. B, 2011, 20(10): 104210.
[14] Analysis of restriction factors of widening diffraction bandwidth of multilayer dielectric grating
Wang Jian-Peng(汪剑鹏), Jin Yun-Xia(晋云霞), Ma Jian-Yong(麻健勇), Shao Jian-Da(邵建达), and Fan Zheng-Xiu(范正修). Chin. Phys. B, 2010, 19(10): 104201.
[15] Study on guided-mode resonance characteristic of multilayer dielectric grating with broadband and wide using-angle
Wang Jian-Peng(汪剑鹏), Jin Yun-Xia(晋云霞), Ma Jian-Yong(麻健勇), Shao Jian-Da(邵建达), and Fan Zheng-Xiu(范正修). Chin. Phys. B, 2010, 19(5): 054202.
No Suggested Reading articles found!