CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials |
Man Xu(许曼)1, Xiaona Yin(殷晓娜)1, Jingjing Huang(黄晶晶)1, Meng Liu(刘蒙)1,†, Huiyun Zhang(张会云)1,2, and Yuping Zhang(张玉萍)1,2,‡ |
1 College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; 2 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China |
|
|
Abstract We numerically demonstrated a novel chiral metamaterial to achieve broadband asymmetric transmission (AT) of linearly polarized electromagnetic waves in terahertz (THz) band. The proposed metamaterial unit cell exhibits no rotational symmetry with vanadium dioxide (VO$_{2}$) inclusion embedded between Dirac semimetals (DSMs) pattern. The resonant frequency of AT can be dynamically tunable by varying the Fermi energy ($E_{\rm F}$) of the DSMs. The insulator-to-metal phase transition of VO$_{2}$ enables the amplitude of the AT to be dynamically tailored. The transmission coefficient $|T_{yx}|$ can be adjusted from 0.756 to nearly 0 by modifying the conductivity of VO$_{2}$. Meanwhile, the AT parameter intensity of linearly polarized incidence can be actively controlled from 0.55 to almost 0, leading to a switch for AT. When VO$_{2}$ is in its insulator state, the proposed device achieves broadband AT parameter greater than 0.5 from 1.21 THz to 1.80 THz with a bandwidth of 0.59 THz. When the incident wave propagates along the backward ($-z$) direction, the cross-polarized transmission $|T_{yx}|$ reaches a peak value 0.756 at 1.32 THz, whereas the value of $|T_{xy}|$ well below 0.157 in the concerned frequency. On the other hand, the co-polarized transmission $|T_{xx}|$ and $|T_{yy}|$ remained equal in the whole frequency range. This work provides a novel approach in developing broadband, tunable, as well as switchable AT electromagnetic devices.
|
Received: 01 December 2021
Revised: 03 January 2022
Accepted manuscript online: 17 January 2022
|
PACS:
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
42.25.Ja
|
(Polarization)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61875106, 62105187, and 61775123), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021QF010), the Shandong Social Science Planning Project, China (Grant No. 21CZXJ08), and the National Key Research and Development Program of China (Grant No. 2017YFA0701000). |
Corresponding Authors:
Meng Liu, Yuping Zhang
E-mail: liumeng0231@tju.edu.cn;sdust_thz@163.com
|
Cite this article:
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍) Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials 2022 Chin. Phys. B 31 067802
|
[1] Tonouchi M 2007 Nat. Photon. 1 97 [2] Zhang H Y, Yang C H, Liu M and Zhang Y P 2021 Results Phys. 25 104242 [3] Ozbay E, Guven K and Aydin K 2007 J. Opt. A-Pure Appl. Op. 9 S301 [4] Wang Anna, Tuniz Alessandro, Hunt Peter G, Pogson Elise M, Lewis Roger A, Bendavid Avi, Fleming Simon C, Kuhlmey Boris T and Large C J 2011 Opt. Mater. Express 1 115 [5] Liu Y, Guo X, Gu S and Zhao X 2013 Int. J. Antenn. Propag. 2013 1098 [6] Koutserimpas T T and Fleury R 2018 J. Appl. Phys. 123 091709 [7] Soukoulis C M, Linden S and Wegener M 2007 Science 315 47 [8] Williams G P 2006 Rep. Prog. Phys. 69 301 [9] Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y and Zheludev N I 2006 Phys. Rev. Lett. 97 167401 [10] Menzel C, Helgert C, Rockstuhl C, Kley E -B, Tünnermann A, Pertsch T and Lederer F 2010 Phys. Rev. Lett. 104 253902 [11] Cheng Y Z, Nie Y, Wang X and Gong R Z 2013 Appl. Phys. A 111 209 [12] Cheng Y Z, Gong R Z and Wu L 2017 Plasmonics 12 1113 [13] Fang S Y, Kang L, Ma H F, Lv W J, Li Y X, Zhu Z, Guan C Y, Shi J H and Cui T J 2017 J. Appl. Phys. 121 033103 [14] Stephen L, Yogesh N and Subramanian V 2018 J. Appl. Phys. 123 033103 [15] Zhao J X, Song J L, Xu T Y, Yang T X and Zhou J H 2019 Opt. Express 27 9773 [16] Li Z C, Liu W W, Cheng H, Chen S and Tian J G 2016 Opt. Lett. 41 3142 [17] Huang Y Y, Yao Z H, Hu F R, Liu C J, Yu L L, Jin Y P and Xu X L 2017 Carbon 119 305 [18] Zhao J Y, Zhang J F, Zhu Z H, Yuan X D and Qin S Q 2016 J. Opt. 18 095001 [19] Zhang Y P, Li Tong Tong, Lv H H, Huang X Y, Zhang X, Xu S L and Zhang H Y 2015 Chin. Phys. Lett. 32 068101 [20] Dai L L, Zhang H Y, O'Hara J F and Zhang Y P 2019 Opt. Express 27 35784 [21] Li Tong, Hu F Q, Qian Y X, Xiao J, Zhang L H, Zhang W T and Han J G 2019 Chin. Phys. B 29 024203 [22] Liu M, Xu Q, Chen X, Plum E, Li H, Zhang X Q, Zhang C H, Zhou C W, Han J G and Zhang W L 2019 Sci. Rep-UK. 9 4097 [23] Liu M, Plum E, Li H, Duan S Y, Li S X, Xu Quan, Zhang X Q, Zhang C H, Zou C W, Jin B B, Han J G and Zhang W L 2020 Adv. Opt. Mater. 8 2000247 [24] Liu M, Plum Eric, Li H, Li S X, Xu Q, Zhang X Q, Zhang C H, Zou C W, Jin B B, Han J G and Zhang W L 2021 Adv. Funct. Mater. 31 2010249 [25] He X Y, Liu F, Lin F T and Shi W Z 2021 J. Phys. D 54 235103 [26] Leng J, Peng J, Jin A, Cao D, Liu D J, He X Y, Lin F T and Liu F 2022 Opt. Laser Technol. 146 107570 [27] Peng J, He X Y, Shi C Y Y, Leng J, Lin F T, Liu F, Zhang H and Shi W Z 2020 Physica E 124 114309 [28] He X Y, Lin F T, Liu F and Shi W Z 2022 Opt. Mater. Express 12 73 [29] Xu Z H, Wu D, Liu Y M, Liu C, Yu Z Y, Yu L and Ye H 2018 Nanoscale Res. Lett. 13 143 [30] He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J and Li S Y 2014 Phys. Rev. Lett. 113 246402 [31] Chen Z, Wu M, Liu Y Q, Gao W S, Han Y Y, Zhou J Z, Ning W and Tian M L 2021 Chin. Phys. Lett. 38 047201 [32] Zdanowicz W and Zdanowicz L 1975 Annu. Rev. Mater. Res. 5 301 [33] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S-K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L 2014 Nat. Mater. 13 677 [34] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864 [35] Li Z Y, Yi Y T, Xu D Y, Yang H, Yi Z, Chen X F, Yi Y G, Zhang J G and Wu P H 2021 Chin. Phys. B 30 098102 [36] Meng H Y, Shang X J, Xue X X, Tang K Z, Xia S X, Zhai X, Liu Z R, Jiang J H, Li H J and Wang L L 2019 Opt. Express 27 31062 [37] Jiang Y, Wang X G, Wang J and Wang J 2018 IEEE Photon. J. 10 4600607 [38] Xiong H, Shen Q and Ji Q 2020 Appl. Opt. 59 4970 [39] Zhao J X, Song J L, Zhou Y, Zhao R L and Zhou J H 2019 Opt. Mater. Express 9 3325 [40] Fan C Z, Ren P W, Jia Y L, Zhu S M and Wang J Q 2021 Chin. Phys. B 30 096103 [41] Shen S M, Liu Y L, Liu W Q, Tan Q L, Xiong J J and Zhang W D 2018 Mater. Res. Express 5 125804 [42] Cao M Y, Wang T L, Li L, Zhang H Y and Zhang Y P 2020 J. Opt. Soc. Am. A 37 1340 [43] Chen H, Zhang H Y, Liu M D, Zhao Y K, Guo X H and Zhang Y P 2017 Opt. Mater. Express 7 3397 [44] Dai L L, Zhang Y P, Guo X H, Zhao Y K, Liu S D and Zhang H Y 2018 Opt. Mater. Express 8 3238 [45] Dai L L, Zhang Y P, Zhang H Y and O'Hara J F 2019 Appl. Phys. Express 12 075003 [46] Jepsen P U, Fischer B M, Thoman A, Helm H, Suh J Y, Lopez R and Haglund R F 2006 Phys. Rev. B 74 205103 [47] Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K and Liu Y L 2010 Appl. Phys. Lett. 97 021111 [48] Zhang C, Zhou G, Wu J, Tang Y, Wen Q, Li S, Han J, Jin B, Chen J and Wu P 2019 Phys. Rev. Appl. 11 054016 [49] Lv T T, Chen X Y, Dong G H, Liu M, Liu D M, Ouyang C M, Zhu Z, Li Y X, Guan C Y, Han J H, Zhang W L, Zhang S and Shi J H 2020 Nanophotonics 9 3235 [50] Kotov O V and Lozovik Yu E 2016 Phys. Rev. B 93 235417 [51] Liu G D, Zhai X, Meng H Y, Liu Q, Huang Y, Zhao C J and Wang L L 2018 Opt. Express 26 11471 [52] Chen L L and Song Z Y 2020 Opt. Express 28 6565 [53] Song Z Y, Deng Y D, Zhou Y G and Liu Z Y 2019 Opt. Express 27 5792 [54] C Menzel, C Rockstuhl and F Lederer 2010 Phys. Rev. A 82 053811 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|