Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 067802    DOI: 10.1088/1674-1056/ac4bd3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials

Man Xu(许曼)1, Xiaona Yin(殷晓娜)1, Jingjing Huang(黄晶晶)1, Meng Liu(刘蒙)1,†, Huiyun Zhang(张会云)1,2, and Yuping Zhang(张玉萍)1,2,‡
1 College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
2 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Abstract  We numerically demonstrated a novel chiral metamaterial to achieve broadband asymmetric transmission (AT) of linearly polarized electromagnetic waves in terahertz (THz) band. The proposed metamaterial unit cell exhibits no rotational symmetry with vanadium dioxide (VO$_{2}$) inclusion embedded between Dirac semimetals (DSMs) pattern. The resonant frequency of AT can be dynamically tunable by varying the Fermi energy ($E_{\rm F}$) of the DSMs. The insulator-to-metal phase transition of VO$_{2}$ enables the amplitude of the AT to be dynamically tailored. The transmission coefficient $|T_{yx}|$ can be adjusted from 0.756 to nearly 0 by modifying the conductivity of VO$_{2}$. Meanwhile, the AT parameter intensity of linearly polarized incidence can be actively controlled from 0.55 to almost 0, leading to a switch for AT. When VO$_{2}$ is in its insulator state, the proposed device achieves broadband AT parameter greater than 0.5 from 1.21 THz to 1.80 THz with a bandwidth of 0.59 THz. When the incident wave propagates along the backward ($-z$) direction, the cross-polarized transmission $|T_{yx}|$ reaches a peak value 0.756 at 1.32 THz, whereas the value of $|T_{xy}|$ well below 0.157 in the concerned frequency. On the other hand, the co-polarized transmission $|T_{xx}|$ and $|T_{yy}|$ remained equal in the whole frequency range. This work provides a novel approach in developing broadband, tunable, as well as switchable AT electromagnetic devices.
Keywords:  terahertz      chiral metamaterials      asymmetric transmission      tunable  
Received:  01 December 2021      Revised:  03 January 2022      Accepted manuscript online:  17 January 2022
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.25.Ja (Polarization)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61875106, 62105187, and 61775123), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021QF010), the Shandong Social Science Planning Project, China (Grant No. 21CZXJ08), and the National Key Research and Development Program of China (Grant No. 2017YFA0701000).
Corresponding Authors:  Meng Liu, Yuping Zhang     E-mail:  liumeng0231@tju.edu.cn;sdust_thz@163.com

Cite this article: 

Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍) Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials 2022 Chin. Phys. B 31 067802

[1] Tonouchi M 2007 Nat. Photon. 1 97
[2] Zhang H Y, Yang C H, Liu M and Zhang Y P 2021 Results Phys. 25 104242
[3] Ozbay E, Guven K and Aydin K 2007 J. Opt. A-Pure Appl. Op. 9 S301
[4] Wang Anna, Tuniz Alessandro, Hunt Peter G, Pogson Elise M, Lewis Roger A, Bendavid Avi, Fleming Simon C, Kuhlmey Boris T and Large C J 2011 Opt. Mater. Express 1 115
[5] Liu Y, Guo X, Gu S and Zhao X 2013 Int. J. Antenn. Propag. 2013 1098
[6] Koutserimpas T T and Fleury R 2018 J. Appl. Phys. 123 091709
[7] Soukoulis C M, Linden S and Wegener M 2007 Science 315 47
[8] Williams G P 2006 Rep. Prog. Phys. 69 301
[9] Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y and Zheludev N I 2006 Phys. Rev. Lett. 97 167401
[10] Menzel C, Helgert C, Rockstuhl C, Kley E -B, Tünnermann A, Pertsch T and Lederer F 2010 Phys. Rev. Lett. 104 253902
[11] Cheng Y Z, Nie Y, Wang X and Gong R Z 2013 Appl. Phys. A 111 209
[12] Cheng Y Z, Gong R Z and Wu L 2017 Plasmonics 12 1113
[13] Fang S Y, Kang L, Ma H F, Lv W J, Li Y X, Zhu Z, Guan C Y, Shi J H and Cui T J 2017 J. Appl. Phys. 121 033103
[14] Stephen L, Yogesh N and Subramanian V 2018 J. Appl. Phys. 123 033103
[15] Zhao J X, Song J L, Xu T Y, Yang T X and Zhou J H 2019 Opt. Express 27 9773
[16] Li Z C, Liu W W, Cheng H, Chen S and Tian J G 2016 Opt. Lett. 41 3142
[17] Huang Y Y, Yao Z H, Hu F R, Liu C J, Yu L L, Jin Y P and Xu X L 2017 Carbon 119 305
[18] Zhao J Y, Zhang J F, Zhu Z H, Yuan X D and Qin S Q 2016 J. Opt. 18 095001
[19] Zhang Y P, Li Tong Tong, Lv H H, Huang X Y, Zhang X, Xu S L and Zhang H Y 2015 Chin. Phys. Lett. 32 068101
[20] Dai L L, Zhang H Y, O'Hara J F and Zhang Y P 2019 Opt. Express 27 35784
[21] Li Tong, Hu F Q, Qian Y X, Xiao J, Zhang L H, Zhang W T and Han J G 2019 Chin. Phys. B 29 024203
[22] Liu M, Xu Q, Chen X, Plum E, Li H, Zhang X Q, Zhang C H, Zhou C W, Han J G and Zhang W L 2019 Sci. Rep-UK. 9 4097
[23] Liu M, Plum E, Li H, Duan S Y, Li S X, Xu Quan, Zhang X Q, Zhang C H, Zou C W, Jin B B, Han J G and Zhang W L 2020 Adv. Opt. Mater. 8 2000247
[24] Liu M, Plum Eric, Li H, Li S X, Xu Q, Zhang X Q, Zhang C H, Zou C W, Jin B B, Han J G and Zhang W L 2021 Adv. Funct. Mater. 31 2010249
[25] He X Y, Liu F, Lin F T and Shi W Z 2021 J. Phys. D 54 235103
[26] Leng J, Peng J, Jin A, Cao D, Liu D J, He X Y, Lin F T and Liu F 2022 Opt. Laser Technol. 146 107570
[27] Peng J, He X Y, Shi C Y Y, Leng J, Lin F T, Liu F, Zhang H and Shi W Z 2020 Physica E 124 114309
[28] He X Y, Lin F T, Liu F and Shi W Z 2022 Opt. Mater. Express 12 73
[29] Xu Z H, Wu D, Liu Y M, Liu C, Yu Z Y, Yu L and Ye H 2018 Nanoscale Res. Lett. 13 143
[30] He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J and Li S Y 2014 Phys. Rev. Lett. 113 246402
[31] Chen Z, Wu M, Liu Y Q, Gao W S, Han Y Y, Zhou J Z, Ning W and Tian M L 2021 Chin. Phys. Lett. 38 047201
[32] Zdanowicz W and Zdanowicz L 1975 Annu. Rev. Mater. Res. 5 301
[33] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S-K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L 2014 Nat. Mater. 13 677
[34] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
[35] Li Z Y, Yi Y T, Xu D Y, Yang H, Yi Z, Chen X F, Yi Y G, Zhang J G and Wu P H 2021 Chin. Phys. B 30 098102
[36] Meng H Y, Shang X J, Xue X X, Tang K Z, Xia S X, Zhai X, Liu Z R, Jiang J H, Li H J and Wang L L 2019 Opt. Express 27 31062
[37] Jiang Y, Wang X G, Wang J and Wang J 2018 IEEE Photon. J. 10 4600607
[38] Xiong H, Shen Q and Ji Q 2020 Appl. Opt. 59 4970
[39] Zhao J X, Song J L, Zhou Y, Zhao R L and Zhou J H 2019 Opt. Mater. Express 9 3325
[40] Fan C Z, Ren P W, Jia Y L, Zhu S M and Wang J Q 2021 Chin. Phys. B 30 096103
[41] Shen S M, Liu Y L, Liu W Q, Tan Q L, Xiong J J and Zhang W D 2018 Mater. Res. Express 5 125804
[42] Cao M Y, Wang T L, Li L, Zhang H Y and Zhang Y P 2020 J. Opt. Soc. Am. A 37 1340
[43] Chen H, Zhang H Y, Liu M D, Zhao Y K, Guo X H and Zhang Y P 2017 Opt. Mater. Express 7 3397
[44] Dai L L, Zhang Y P, Guo X H, Zhao Y K, Liu S D and Zhang H Y 2018 Opt. Mater. Express 8 3238
[45] Dai L L, Zhang Y P, Zhang H Y and O'Hara J F 2019 Appl. Phys. Express 12 075003
[46] Jepsen P U, Fischer B M, Thoman A, Helm H, Suh J Y, Lopez R and Haglund R F 2006 Phys. Rev. B 74 205103
[47] Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K and Liu Y L 2010 Appl. Phys. Lett. 97 021111
[48] Zhang C, Zhou G, Wu J, Tang Y, Wen Q, Li S, Han J, Jin B, Chen J and Wu P 2019 Phys. Rev. Appl. 11 054016
[49] Lv T T, Chen X Y, Dong G H, Liu M, Liu D M, Ouyang C M, Zhu Z, Li Y X, Guan C Y, Han J H, Zhang W L, Zhang S and Shi J H 2020 Nanophotonics 9 3235
[50] Kotov O V and Lozovik Yu E 2016 Phys. Rev. B 93 235417
[51] Liu G D, Zhai X, Meng H Y, Liu Q, Huang Y, Zhao C J and Wang L L 2018 Opt. Express 26 11471
[52] Chen L L and Song Z Y 2020 Opt. Express 28 6565
[53] Song Z Y, Deng Y D, Zhou Y G and Liu Z Y 2019 Opt. Express 27 5792
[54] C Menzel, C Rockstuhl and F Lederer 2010 Phys. Rev. A 82 053811
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[12] Temperature-responded tunable metalenses based on phase transition materials
Jing-Jun Wu(伍景军), Feng Tang(唐烽), Jun Ma(马骏), Bing Han(韩冰), Cong Wei(魏聪), Qing-Zhi Li(李青芝), Jun Chen(陈骏), Ning Zhang(张宁), Xin Ye(叶鑫), Wan-Guo Zheng(郑万国), and Ri-Hong Zhu(朱日宏). Chin. Phys. B, 2022, 31(5): 054216.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[15] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
No Suggested Reading articles found!