Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117701    DOI: 10.1088/1674-1056/abc0d4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Surface termination effects on the electrical characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition

Ji-Bin Fan(樊继斌)1, †, Shan-Ya Ling(凌山雅)1, Hong-Xia Liu(刘红侠)2, Li Duan(段理)1, Yan Zhang(张研)1, Ting-Ting Guo(郭婷婷)1, Xing Wei(魏星)1, and Qing He(何清)1$
1 School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China
2 School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi’an 710071, China
Abstract  

Effects of initial surface termination on electrical characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition are studied by conductive atomic force microscopy working in contact mode and standard electrical characterization methods. It is found that, compared with La2O3/Al2O3 nanolaminates with LaOx as termination, lower interface trap density, less current leakage spots, and higher breakdown voltage are obtained in the La2O3/Al2O3 nanolaminates with AlOx as termination after annealing. A clear promotion of interface silicate layer is observed for La2O3/Al2O3 nanolaminates with AlOx as termination compared with LaOx as termination under the same annealing condition. In addition, the current conduction mechanism in La2O3/Al2O3 nanolaminates is considered as the Poole–Frenkel conduction. All results indicate that the AlOx is a more appropriate termination to deposit La2O3/Al2O3 nanolaminates on Si substrate, which is useful for the high-κ process development.

Keywords:  La2O3/Al2O3      atomic layer deposition      termination      annealing  
Received:  14 May 2020      Revised:  24 September 2020      Accepted manuscript online:  14 October 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 61604016 and 51802025), China Postdoctoral Science Foundation (Grant No. 2017M613028), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 300102319209 and 300102310501) and the Innovation, and Entrepreneurship Training Program for Undergraduates (Grant Nos. 202010710231 and 201910710564).
Corresponding Authors:  Corresponding author. E-mail: jbfan@chd.edu.cn   

Cite this article: 

Ji-Bin Fan(樊继斌), Shan-Ya Ling(凌山雅), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Ting-Ting Guo(郭婷婷), Xing Wei(魏星), and Qing He(何清)$ Surface termination effects on the electrical characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition 2020 Chin. Phys. B 29 117701

Fig. 1.  

Structures of the La2O3/Al2O3 nanolaminates with (a) AlOx termination, and (b) LaOx termination.

Fig. 2.  

The CV characteristics of La2O3/Al2O3 nanolaminates with different terminations (f = 100 kHz).

Fig. 3.  

Interface state density of La2O3/Al2O3 nanolaminates with different terminations.

Fig. 4.  

The CAFM images of (a) as-deposited nanolaminate-AlOx, (b) annealed nanolaminate-AlOx, (c) as-deposited nanolaminate-LaOx, and (d) annealed nanolaminate-LaOx measured by conductive AFM with a conductive tip.

Fig. 5.  

The IV curves of the La2O3/Al2O3 nanolaminates measured at the positions of conductive spots in the CAFM images.

Fig. 6.  

The plot of ln(J/E) versus E1/2 obtained from the IV curves of Fig. 5.

Fig. 7.  

The O1s spectra of La2O3/Al2O3 nanolaminates with different terminations deposited by the ALD.

[1]
Gupta S, Gong X, Zhang R, Yeo Y C, Takagi S, Saraswat K C 2014 MRS Bull. 39 678 DOI: 10.1557/mrs.2014.163
[2]
Ablat A, Mamat M, Ghupur Y, Aimidula A, Wu R, Ali Baqi M, Gholama T, Wang J, Qian H, Wu R, Ibrahim W 2017 Mater. Lett. 191 97 DOI: 10.1016/j.matlet.2016.12.137
[3]
Mcdaniel M D, Ngo T Q, Hu S, Posadas A, Demkov A A, Ekerdt J G 2015 Appl. Phys. Rev. 2 041301 DOI: 10.1063/1.4934574
[4]
Fan J B, Liu H X, Li D L, Wang S L, Duan L, Yu X C 2017 J. Mater. Sci.: Mater. Electron. 28 11253 DOI: 10.1007/s10854-017-6914-6
[5]
Fujitsuka R, Sakashita M, Sakai A, Ogawa M, Yasuda Y 2005 Jpn. J. Appl. Phys. 44 2428 DOI: 10.1143/JJAP.44.2428
[6]
Fei C X, Liu H X, Wang X, Zhao D D, Wang S L, Chen S P 2016 Chin. Phys. B 25 058106 DOI: 10.1088/1674-1056/25/5/058106
[7]
Baek Y, Lim S, Kim L H, Park S, Lee S W, Oh T H, Kim S H, Park C E 2015 Org. Electron. 28 139 DOI: 10.1016/j.orgel.2015.10.025
[8]
Kim L H, Kim K, Park S, Jeong Y J, Kim H, Chung D S, Kim S H, Park CE 2014 ACS Appl. Mater. Interfaces 6 6731 DOI: 10.1021/am500458d
[9]
Werner F, Veith B, Zielke D, Kühnemund L, Tegenkamp C, Michael Seibt, Brendel1 R, Schmidt J 2011 J. Appl. Phys. 109 113701 DOI: 10.1063/1.3587227
[10]
Goncharova L V, Dalponte M, Feng T, Gustafsson T, Garfunkel E, Lysaght P S, Bersuker G 2011 Phys. Rev. B 83 115329 DOI: 10.1103/PhysRevB.83.115329
[11]
Travis C D, Adomaitis R A 2013 Chem. Vap. Deposition 19 4 DOI: 10.1002/cvde.201206985
[12]
Mistry K, Allen C, Auth C, Beattie B, Bergstrom D, Bost M, Brazier M, Buehler M, Cappellani A, Chau R, Choi C H, Ding G, Fischer K, Ghani T, Grover R, Han W, Hanken D, Hattendorf M, He J, Zawadzki K 2007 Int. Electron Devices Meet. 247 DOI: 10.1109/IEDM.2007.4418914
[13]
Iwamoto K, Kamimuta Y, Ogawa A, Iwamoto K, Kamimuta Y, Arito Ogawa, Watanabe Y, Migita S, Mizubayashi W, Morita Y, Takahashi M, Ota H, Nabatame T, Toriumi A 2008 Appl. Phys. Lett. 92 132907 DOI: 10.1063/1.2904650
[14]
Min K H, Choi S, Jeong M S, Kang M G, Park S, Song H E, Lee J I, Kim D W 2019 Curr. Appl. Phys. 19 155 DOI: 10.1016/j.cap.2018.09.004
[15]
Matsuoka R, Shigesawa E, Miyamoto S, Sawano K, Itoh K M 2019 Semicond. Sci. Tech. 34 014004 DOI: 10.1088/1361-6641/aaf19b
[16]
Von Gastrow G, Li S, Repo P, Bao Y, Putkonen M, Savin H 2013 Energy Procedia 38 890 DOI: 10.1016/j.egypro.2013.07.361
[17]
Vogel E M, Henson W K, Richter C A, Suehle J S 2000 IEEE T. Electron. Dev. 47 601 DOI: 10.1109/16.824736
[18]
Iglesias V, Wu Q, Porti M, Nafría M, Bersuker G, Cordes A 2015 Microelectron. Eng. 147 31 DOI: 10.1016/j.mee.2015.04.058
[19]
Fan J B, Cheng X J, Liu H X, Wang S L, Duan L 2017 Chin. Phys. B 26 087701 DOI: 10.1088/1674-1056/26/8/087701
[20]
Molina J, Tachi K, Kakushima K, Ahmet P, Hiroshi I 2006 ECS Trans. 3 233 DOI: 10.1149/1.2355715
[21]
Eom D, Hwang C S, Kim H J, Cho M H, Chung K B 2008 Electrochem. Solid-State Lett. 11 G33 DOI: 10.1149/1.2916437
[22]
Couso C, Iglesias V, Porti M, Claramunt S, Nafria M, Domingo N, Cordes A, Bersuker G 2016 IEEE Electron Dev. Lett. 37 640 DOI: 10.1109/LED.2016.2537051
[23]
Rao P K, Park B, Lee S T, Noh Y K, Kim M D, Oh J E 2011 J. Appl. Phys. 110 013716 DOI: 10.1063/1.3607245
[24]
Besmehn A, Scholl A, Rije E, Breuer U 2005 Appl. Surf. Sci. 252 172 DOI: 10.1016/j.apsusc.2005.02.028
[25]
Guittet M J, Crocombette J P, Gautier-Soyer M 2001 Phys. Rev. B 63 125117 DOI: 10.1103/PhysRevB.63.125117
[26]
Lin L I, Tang Z, Sun W, Wang P 1999 J. Mater. Sci. Tech. 15 439
[27]
Lee B, Novak S R, Lichtenwalner D J, Yang X, Misra V 2011 IEEE T. Electron. Dev. 58 3106 DOI: 10.1109/TED.2011.2159306
[1] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[2] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[3] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[4] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[5] Designing high k dielectric films with LiPON—Al2O3 hybrid structure by atomic layer deposition
Ze Feng(冯泽), Yitong Wang(王一同), Jilong Hao(郝继龙), Meiyi Jing(井美艺), Feng Lu(卢峰), Weihua Wang(王维华), Yahui Cheng(程雅慧), Shengkai Wang(王盛凯), Hui Liu(刘晖), and Hong Dong(董红). Chin. Phys. B, 2022, 31(5): 057701.
[6] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[7] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[8] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
[9] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[10] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[11] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[12] Fabrication and characterization of Al-Mn superconducting films for applications in TES bolometers
Qing Yu(余晴), Yi-Fei Zhang(张翼飞), Chang-Hao Zhao(赵昌昊), Kai-Yong He(何楷泳), Ru-Tian Huang(黄汝田), Yong-Cheng He(何永成), Xin-Yu Wu(吴歆宇), Jian-She Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(7): 077402.
[13] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[14] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[15] Characterization and application in XRF of HfO2-coated glass monocapillary based on atomic layer deposition
Yan-Li Li(李艳丽), Ya-Bing Wang(王亚冰), Wei-Er Lu(卢维尔), Xiang-Dong Kong(孔祥东), Li Han(韩立), and Hui-Bin Zhao(赵慧斌). Chin. Phys. B, 2021, 30(5): 050703.
No Suggested Reading articles found!