CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films |
Qi-Xun Guo(郭奇勋)1,2,†, Zhong-Xu Ren(任中旭)1,†, Yi-Ya Huang(黄意雅)1, Zhi-Chao Zheng(郑志超)1, Xue-Min Wang(王学敏)2, Wei He(何为)3, Zhen-Dong Zhu(朱振东)4,‡, and Jiao Teng(滕蛟)1,§ |
1 Department of Material Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083, China; 2 Collaborative Innovation Center of Advanced Steel Technology, University of Science and Technology Beijing, Beijing 100083, China; 3 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 4 National Institute of Metrology, Beijing 100029, China |
|
|
Abstract A well-established method is highly desirable for growing topological insulator thin films with low carrier density on a wafer-level scale. Here, we present a simple, scalable method based on magnetron sputtering to obtain high-quality Bi2Te3 films with the carrier density down to 4.0×1013 cm-2. In contrast to the most-used method of high substrate temperature growth, we firstly sputtered Bi2Te3 thin films at room temperature and then applied post-annealing. It enables the growth of highly-oriented Bi2Te3 thin films with larger grain size and smoother interface. The results of electrical transport show that it has a lower carrier density as well as a larger coherent length (~228 nm, 2 K). Our studies pave the way toward large-scale, cost-effective production of Bi2Te3 thin films to be integrated with other materials in wafer-level scale for electronic and spintronic applications.
|
Received: 09 February 2021
Revised: 10 March 2021
Accepted manuscript online: 15 March 2021
|
PACS:
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
72.15.Rn
|
(Localization effects (Anderson or weak localization))
|
|
73.20.Fz
|
(Weak or Anderson localization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52072030, 52071025, and 51871018), the Beijing Outstanding Young Scientists Projects (Grant No. BJJWZYJH01201910005018), Beijing Natural Science Foundation, China (Grant No. Z180014), the Science and Technology Innovation Team Program of Foshan (Grant No. FSOAA-KJ919-4402-0087), and Beijing Laboratory of Metallic Materials and Processing for Modern Transportation. |
Corresponding Authors:
Zhen-Dong Zhu, Jiao Teng
E-mail: zd_tsu@163.com;tengjiao@mater.ustb.edu.cn
|
Cite this article:
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟) Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films 2021 Chin. Phys. B 30 067307
|
[1] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398 [2] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178 [3] Hsieh D, Xia Y, D Qian, Wray L, Meier F, Dil J H, Osterwalder J, Patthey L, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Phys. Rev. Lett. 103 146401 [4] Zhang T, Cheng P, Chen X, Jia J F, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z, Xie X and Xue Q K 2009 Phys. Rev. Lett. 103 266803 [5] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167 [6] He X, Guan T, Wang X, Feng B, Cheng P, Chen L, Li Y and Wu K 2012 Appl. Phys. Lett. 101 123111 [7] Stephen G M, Vail O A, Lu J, Beck W A, Taylor P J and Friedman A L 2020 Sci. Rep. 10 4845 [8] Liu Y H, Chong C W, FanChiang C M, Huang J C, Han H C, Li Z, Qiu H, Li Y C and Liu C P 2017 ACS Appl Mater Interfaces 9 12859 [9] Yuan H T, Liu H W, Shimotani H, Guo H, Chen M W, Xue Q K and Iwasa Y 2011 Nano Lett. 11 2601 [10] Liao J, Ou Y B, Liu H W, He K, Ma X C, Xue Q K and Li Y Q 2017 Nat. Commun. 8 16071 [11] Harrison S E, Li S, Huo Y, Zhou B, Chen Y L and Harris J S 2013 Appl. Phys. Lett. 102 171906 [12] Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z and Wu K 2009 Appl. Phys. Lett. 95 053114 [13] Wu H, Zhang P, Deng P, Lan Q, Pan Q, Razavi S A, Che X, Huang L, Dai B, Wong K, Han X and Wang K L 2019 Phys. Rev. Lett. 123 207205 [14] Rosenbach D, Oellers N, Jalil A R, Mikulics M, Kölzer J, Zimmermann E, Mussler G, Bunte S, Grützmacher D, Lüth H and Schäpers T 2020 Adv. Electron. Mater. 6 2000205 [15] Liao Z, Brahlek M, Ok J M, Nuckols L, Sharma Y, Lu Q, Zhang Y and Lee H N 2019 APL Materials 7 041101 [16] Zhang S X, McDonald R D, Shekhter A, Bi Z X, Li Y, Jia Q X and Picraux S T 2012 Appl. Phys. Lett. 101 202403 [17] Wang Z H, Yang L, Li X J, Zhao X T, Wang H L, Zhang Z D and Gao X P 2014 Nano Lett. 14 6510 [18] Guo Q, Wu Y, Xu L, Gong Y, Ou Y, Liu Y, Li L, Yan Y, Han G, Wang D, Wang L, Long S, Zhang B, Cao X, Yang S, Wang X, Huang Y, Liu T, Yu G, He K and Teng J 2020 Chin. Phys. Lett. 37 057301 [19] Zhu S, Meng D, Liang G, Shi G, Zhao P, Cheng P, Li Y, Zhai X, Lu Y, Chen L and Wu K 2018 Nanoscale 10 10041 [20] Björck M and Andersson G 2007 J. Appl. Crystallogr. 40 1174 [21] Chen J, He X Y, Wu K H, Ji Z Q, Lu L, Shi J R, Smet J H and Li Y Q 2011 Phys. Rev. B 83 241304 [22] Zhao Y, Chang C Z, Jiang Y, DaSilva A, Sun Y, Wang H, Xing Y, Wang Y, He K, Ma X, Xue Q K and Wang J 2013 Sci. Rep. 3 3060 [23] Wang W J, Gao K H and Li Z Q 2016 Sci. Rep. 6 25291 [24] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707 [25] Takagaki Y, Giussani A, Perumal K, Calarco R and Friedland K J 2012 Phys. Rev. B 86 125137 [26] Assaf B A, Cardinal T, Wei P, Katmis F, Moodera J S and Heiman D 2013 Appl. Phys. Lett. 102 012102 [27] Altshuler B L, Aronov A G and Khmelnitsky D E 1982 J. Phys. C: Solid State Phys. 15 7367 [28] Wang X, He H, Wang N and Miao L 2013 Appl. Surf. Sci. 276 539 [29] Kampmeier J, Borisova S, Plucinski L, Luysberg M, Mussler G and Grützmacher D 2015 Crystal Growth & Design 15 390 [30] Scanlon D O, King P D, Singh R P, de la Torre A, Walker S M, Balakrishnan G, Baumberger F and Catlow C R 2012 Adv. Mater. 24 2154 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|