Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077303    DOI: 10.1088/1674-1056/abf644
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors

Peng Liu(刘鹏)1,2,3, Ji-Long Hao(郝继龙)1,2,3, Sheng-Kai Wang(王盛凯)1,2,3,†, Nan-Nan You(尤楠楠)1,2,3, Qin-Yu Hu(胡钦宇)1,2,3, Qian Zhang(张倩)1,2,3, Yun Bai(白云)1,2,3,‡, and Xin-Yu Liu(刘新宇)1,2,3
1 Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  The effects of dry O2 post oxidation annealing (POA) at different temperatures on SiC/SiO2 stacks are comparatively studied in this paper. The results show interface trap density (Dit) of SiC/SiO2 stacks, leakage current density (Jg), and time-dependent dielectric breakdown (TDDB) characteristics of the oxide, are affected by POA temperature and are closely correlated. Specifically, Dit, Jg, and inverse median lifetime of TDDB have the same trend against POA temperature, which is instructive for SiC/SiO2 interface quality improvement. Moreover, area dependence of TDDB characteristics for gate oxide on SiC shows different electrode areas lead to same slope of TDDB Weibull curves.
Keywords:  SiC      O2 post oxidation annealing      interface traps      MOS  
Received:  19 February 2021      Revised:  01 April 2021      Accepted manuscript online:  09 April 2021
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: Project supported by the General Program of the National Natural Science Foundation of China (Grant No. 61974159) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences and Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20200039).
Corresponding Authors:  Sheng-Kai Wang, Yun Bai     E-mail:  wangshengkai@ime.ac.cn;baiyun@ime.ac.cn

Cite this article: 

Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇) Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors 2021 Chin. Phys. B 30 077303

[1] Cooper J A and Agarwal A 2002 Proc. IEEE 90 956
[2] Liu X Y, Hao J L, You N N, Bai Y and Wang S K 2019 AIP Adv. 9 125150
[3] Liu X Y, Hao J L, You N N, Bai Y, Tang Y D, Yang C Y and Wang S K 2020 Chin. Phys. B 29 037301
[4] Gao K Y, Seyller T, Emtsev K V, Ley L, Ciobanu F and Pensl G 2005 Mat. Sci. Forum 483-485 559
[5] Renz A B, Vavasour O J, Gammon P M, Li F, Dai T, Esfahani S, Baker G W C, Grant N E, Murphy J D, Mawby P A and Shah V A 2020 Mater. Sci. Forum 1004 547
[6] Zhang F, Yang W F, Huang H L, Chen X P, Wu Z Y, Zhu H L, Qi H J, Yao J K, Fan Z X and Shao J D 2008 Appl. Phys. Lett. 92 251102
[7] Zhang Y J, Yin Z P, Su Y and Wang D J 2018 Chin. Phys. B 27 047103
[8] Koyanagi J, Nishida M and Kita K 2020 Jpn. J. Appl. Phys. 59 SMMA06
[9] Kil T H and Kita K 2020 ECS Trans. 98 47
[10] Hao J L, Bai Y, Liu X Y, Li C Z and Wang S K 2020 Chin. Phys. B 29 097301
[11] Chakraborty S, Lai P, Chan C and Cheng Y 2000 Appl. Phys. Lett. 76 3744
[12] Li X Y, Lee S S, Li M J, Ermakov A, Medina-Ramos J, Fister T T, Amarasinghe V, Gustafsson T, Garfunkel E, Fenter P and Feldman L C 2018 Appl. Phys. Lett. 113 131601
[13] Yang C, Yin Z P, Zhang F L, Su Y, Qin F W and Wang D J 2020 Appl. Surf. Sci. 513 145837
[14] Yang C, Zhang F L, Yin Z P, Su Y, Qin F W and Wang D J 2019 Appl. Surf. Sci. 488 293
[15] Hao J L 2020 Investigation of SiC-MOS gate oxidation and interface passivation technology, Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)
[16] Lipkin L A and Palmour J W 1996 J. Electron. Mater. 25 909
[17] Das M K, Cooper J A and Melloch M R 1998 J. Electron. Mater. 27 353
[18] Jernigan G G, Stahlbush R E and Saks N S 2000 Appl. Phys. Lett. 77 1437
[19] Król K, Kalisz M, Sochacki M and Szmidt J 2012 Mater. Sci. Eng. B 177 1314
[20] Kikuchi R H and Kita K 2014 Appl. Phys. Lett. 105 032106
[21] Kobayashi T, Tachiki K, Ito K and Kimoto T 2019 Appl. Phys. Express 12 031001
[22] Zhu Q Z and Wang D J 2014 Journal of Semiconductors 35 024002
[23] Yang C, Wei S S and Wang D J 2021 J. Phys. D: Appl. Phys. 54 123002
[24] Kim Y H, Onishi K, Chang S K, Cho H J, Nieh R, Gopalan S, Choi R, Han J, Krishnan S and Lee J C 2002 Electron Dev. Lett. 23 594
[25] Sune J, Wu E Y, Jimenez D and Lai W L 2003 Microelectron. Reliab. 43 1185
[26] Fiorenza P, Schiliró E, Giannazzo F, Bongiorno C, Zielinski M, La Via F and Roccaforte F 2020 Appl. Surf. Sci. 526 146656
[27] Wu E Y and Vollertsen R P 2003 IEEE Trans. Electron Dev. 49 2131
[28] Nigam T, Degraeve R, Groeseneken G, Heyns M M and Maes H E 1998 Proc. 36th IEEE Int. Rel. Phys. Symp. 96 62
[29] Luo J and Tao L 2014 Math. Probl. Eng. 2014 1
[30] Hatakeyama T, Kono H, Suzuki T, Senzaki J, Fukuda K, Shinohe T and Arai K 2009 Mater. Sci. Forum 615-617 553
[31] Gurfinkel M, Horst J C, Suehle J S, Bernstein J B and Beaupre R A 2008 IEEE Trans. Dev. Mat. Rel. 8 635
[32] Afanasev V V, Bassler M, Pensl G and Schulz M 1997 Phys. Stat. Sol. A 162 321
[33] Yin Z, Yang C, Zhang F, Su Y and Wang D 2020 Appl. Surf. Sci. 531 147312
[34] Kita K, Kikuchi R H, Hirai H and Fujino Y 2014 ECS Trans. 64 23
[35] Song Y, Dhar S, Feldman L C, Chung G and Williams J R 2004 J. Appl. Phys. 95 4953
[36] Goto D, Hijikata Y, Yagi S and Yaguchi H 2015 J. Appl. Phys. 117 095306
[37] You N N, Liu X Y, Hao J L, Bai Y and Wang S K 2020 Vacuum 182 109762
[38] Cherkaoui K, Blake A, Gomeniuk Y Y, Lin J, Sheehan B, White M, Hurley P K and Ward P J 2018 AIP Adv. 8 085323
[39] Goto D and Hijikata Y 2016 J. Phys. D: Appl. Phys. 49 225103
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[4] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[5] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[6] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[7] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[8] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[9] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[10] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[11] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[12] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[13] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[14] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[15] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
No Suggested Reading articles found!