CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing |
Mingchen Hou(侯明辰)1,2, Gang Xie(谢刚)1,2,†, Qing Guo(郭清)1,3, and Kuang Sheng(盛况)1,2 |
1 College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; 2 Hangzhou Innovation Center, Zhejiang University, Hangzhou 310027, China; 3 Ningbo Chipex Semiconductor Co., LTD., Ningbo 315000, China |
|
|
Abstract AlGaN/GaN high-electron-mobility transistors with Au-free ohmic contacts are fabricated by selective laser annealing and conventional rapid thermal annealing. The current transport mechanism of ohmic contacts is investigated. High-temperature annealing can be avoided in the isolated region and the active region by selective laser annealing. The implanted isolation leakage current is maintained 10-6 mA/mm even at 1000 V after selective laser annealing. On the contrary, high-temperature annealing will cause obvious degradation of the isolation. The morphology of AlGaN surface is measured by atomic force microscope. No noticeable change of the AlGaN surface morphology after selective laser annealing, while the root-mean-square roughness value markedly increases after rapid thermal annealing. The smaller frequency dispersion of capacitance-voltage characteristics confirms the lower density of surface states after selective laser annealing. Thus, dynamic on-resistance is effectively suppressed.
|
Received: 08 February 2021
Revised: 12 March 2021
Accepted manuscript online: 30 March 2021
|
PACS:
|
73.61.Ey
|
(III-V semiconductors)
|
|
81.40.Rs
|
(Electrical and magnetic properties related to treatment conditions)
|
|
42.55.-f
|
(Lasers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51577169 and 51777187), the National Key Research and Development Program of China (Grant No. 2017YFB0402804), and the “Science and Technology Innovation 2025” Major Program of Ningbo (Grant No. 2018B10098). |
Corresponding Authors:
Gang Xie
E-mail: xielyz@zju.edu.cn
|
Cite this article:
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况) Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing 2021 Chin. Phys. B 30 097302
|
[1] Chow T P and Tyagi R 1994 IEEE Trans. Electron Dev. 41 1481 [2] Hou M C, Xie G and Sheng K 2019 Chin. Phys. B 28 037302 [3] Shriki A, Winter R, Calahorra Y, Kauffmann Y, Ankonina G, Eizenberg M and Ritter D 2017 J. Appl. Phys. 121 065301 [4] Liu Z H, Sun M, Lee H S, Heuken M and Palacios T 2013 Appl. Phys. Express 6 096502 [5] Yao J N, Lin Y C, Chuang Y L, Huang Y X and Chang E Y 2015 IEEE International Symposium on the Physical & Failure Analysis of Integrated Circuits, June 29-July 2, 2015, Hsinchu, Taiwan, China [6] Lee J G, Kim H S, Kim D H, Han S W, Seo K S and Cha H Y 2015 Semicond. Sci. Technol. 30 085005 [7] Zhang J H, Huang S, Bao Q L, Wang X L, Wei K, Zheng Y K, Li Y K, Zhao C, Liu X Y, Zhou Q, Chen W J and Zhang B 2015 Appl. Phys. Lett. 107 262109 [8] Li Q X, Zhou Q B, Gao S, Liu X Y and Wang H 2018 Solid State Electron. 147 1 [9] Guziewicz M, Taube A, Ekielski M, Golaszewska K, Zdunek J, Bazarnik P, Adamczyk-Cieslak B and Szerling A 2019 Mater. Sci. Semicond. Process. 96 153 [10] Hou M C, Xie G and Sheng K 2019 Electron. Lett. 55 658 [11] Shiu J Y, Huang J C, Desmaris V, Chang C T, Lu C Y, Kumakura K, Shiu, Makimoto T, Zirath H, Rorsman N and Chang E Y 2007 IEEE Electron Dev. Lett. 28 476 [12] Lo C F, Kang T S, Liu L, Chang C Y, Pearton S J, Kravchenko I I, Laboutin O, Johnson J W and Ren F 2010 Appl. Phys. Lett. 97 262116 [13] Taube A, Kaminska E, Kozubal M, Kaczmarski J, Wojtasiak W, Jasinski J, Borysiewicz M A, Ekielski M, Juchniewicz M, Grochowski J, Mysliwiec M, Dynowska E, Barcz A, Prystawko P, ZajaÎc M, Kucharski R and Piotrowska A 2015 Phys. Status Solidi A 212 1162 [14] Arulkumarana S, Ranjan K, Ng G I, Kennedy J, Murmu P P, Bhat T N and Tripathy S 2016 J. Vacuum Sci. Technol. B 34 042203 [15] Hou M C, Xie G and Sheng K 2018 IEEE Electron Dev. Lett. 39 1137 [16] Schroder D K 2006 Semiconductor Material and Device Characterization, 3rd edn. (Hoboken: John Wiley and Sons) p. 133 [17] Zhao M L, Tang X S, Huo W X, Han L L, Deng Z, Jiang Y, Wang W X, Chen H, Du C H and Jia H Q 2020 Chin. Phys. B 29 048104 [18] Yamada T, Watanabe K, Nozaki M, Shih H A, Nakazawa S, Anda Y, Ueda T, Yoshigoe A, Hosoi T and Shimura T 2018 Jpn. J. Appl. Phys. 57 06KA07 [19] Liu M H, Huang Z W, Chang G C, Lin X N, Li L and Jin Y F 2020 Chin. Phys. Lett. 37 097101 [20] Hu S, Yang L, Mi M H, Hou B, Liu S, Zhang M, Wu M, Zhu Q, Wu S, Lu Y, Zhu J J, Zhou X W, Lv L, Ma X H and Hao Y 2020 Chin. Phys. B 29 087305 [21] Hori Y, Yatabe Z and Hashizume T 2013 J. Appl. Phys. 114 244503 [22] Neamen D A 2012 Semiconductor Physics and Devices: basic principles, 4th edn. (New York: McGraw-Hill) pp. 400-403 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|