Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057702    DOI: 10.1088/1674-1056/ac272a

Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode

Qiliang Wang(王启亮)1,2,†, Tingting Wang(王婷婷)3,†, Taofei Pu(蒲涛飞)4, Shaoheng Cheng(成绍恒)1,2, Xiaobo Li(李小波)4,‡, Liuan Li(李柳暗)1,2,§, and Jinping Ao(敖金平)3,4
1 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
2 Shenzhen Research Institute, Jilin University, Shenzhen 518057, China;
3 National Key Discipline Laboratory of Wide Band-gap Semiconductor, School of Microelectronics, Xidian University, Xi'an 710071, China;
4 Institute of Technology and Science, Tokushima University, Tokushima 770-8506, Japan
Abstract  A quasi-vertical GaN Schottky barrier diode with a hybrid anode structure is proposed to trade off the on-resistance and the breakdown voltage. By inserting a SiN dielectric between the anode metal with a relatively small length, it suppresses the electric field crowding effect without presenting an obvious effect on the forward characteristics. The enhanced breakdown voltage is ascribed to the charge-coupling effect between the insulation dielectric layer and GaN. On the other hand, the current density is decreased beneath the dielectric layer with the increasing length of the SiN, resulting in a high on-resistance. Furthermore, the introduction of the field plate on the side wall forms an metal-oxide-semiconductor (MOS) channel and decreases the series resistance, but also shows an obvious electric field crowding effect at the bottom of the mesa due to the quasi-vertical structure.
Keywords:  Schottky barrier diode      hybrid anode      dielectric      edge termination  
Received:  31 July 2021      Revised:  06 September 2021      Accepted manuscript online: 
PACS:  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  52.59.Mv (High-voltage diodes)  
  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province,China (Grant No.2020B0101690001) and the Natural Science Foundation of Sichuan Province,China (Grant No.22YYJC0596).
Corresponding Authors:  Xiaobo Li,;Liuan Li,     E-mail:;
About author:  2021-9-16

Cite this article: 

Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平) Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode 2022 Chin. Phys. B 31 057702

[1] Saitoh Y, Sumiyoshi K, Okada M, et al. 2010 Appl. Phys. Exp. 3 081001
[2] Tanaka N, Hasegawa K, Yasunishi K, et al. 2015 Appl. Phys. Exp. 8 071001
[3] Han S, Yang S and Sheng K 2018 IEEE Electron Device Lett. 39 572
[4] Liu D P, Li X B, Pu T F, et al. 2021 Chin. Phys. B 30 038101
[5] Wang Y, Pu T, Li X, Li L and Ao J P 2021 Mater. Sci. Semicond. Proc. 125 105628
[6] Zhang Y M, Wang J F, Cai D M, et al. 2020 Chin. Phys. B 29 026104
[7] Zhang Y, Dadgar A and Palacios T 2018 J. Phys. D: Appl. Phys. 51 273001
[8] Hu J, Zhang Y, Sun M, et al. 2018 Mater. Sci. Semicond. Process. 78 75
[9] Pu T, Younis U, Chiu H, et al. 2021 Nanoscale Res. Lett. 16 101
[10] Sun Y, Kang X, Zheng Y, et al. 2019 Electronics 8 575
[11] Zhang Y, Liu Z, Tadjer M, et al. 2017 IEEE Electron Device Lett. 38 1097
[12] Xiao M, Du Z, Xie J, et al. 2020 Appl. Phys. Lett. 116 053503
[13] Sakurai H, Omori M, Yamada S, et al. 2019 Appl. Phys. Lett. 115 142104
[14] Chen J, Bian Z, Liu Z, Ning J, et al. 2019 Semicond. Sci. Technol. 34 115019
[15] Jia X, Chen S, Liu Y, et al. 2020 IEEE Transactions on Electron Devices 67 1931
[16] Chen S, Wang H, Hu C., et al. 2019 J. Alloys Compd. 804 435
[17] Wang T, Li Liuan, Wang X, et al. 2021 Superlattic. Microst. 156 106986
[18] Zhou J, He L, Li X, et al. 2021 Superlattic. Microst. 151 106820
[19] Allen N, Xiao M, Yan X, et al. 2019 IEEE Electron Device Lett. 40 1399
[20] Guo F, Huang S, Wang X, et al. 2021 Appl. Phys. Lett. 118 093503
[1] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[2] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[3] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[4] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[8] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[9] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[10] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[11] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[12] Strong near-field couplings of anapole modes and formation of higher-order electromagnetic modes in stacked all-dielectric nanodisks
Bin Liu(刘彬), Ma-Long Hu(胡马龙), Yi-Wen Zhang(章艺文), Yue You(游悦), Zhao-Guo Liang(梁钊国), Xiao-Niu Peng(彭小牛), and Zhong-Jian Yang(杨中见). Chin. Phys. B, 2022, 31(5): 057802.
[13] Designing high k dielectric films with LiPON—Al2O3 hybrid structure by atomic layer deposition
Ze Feng(冯泽), Yitong Wang(王一同), Jilong Hao(郝继龙), Meiyi Jing(井美艺), Feng Lu(卢峰), Weihua Wang(王维华), Yahui Cheng(程雅慧), Shengkai Wang(王盛凯), Hui Liu(刘晖), and Hong Dong(董红). Chin. Phys. B, 2022, 31(5): 057701.
[14] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[15] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
No Suggested Reading articles found!