Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 098503    DOI: 10.1088/1674-1056/ac6db3
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing

Chen Wang(王尘)1,†, Wei-Hang Fan(范伟航)1, Yi-Hong Xu(许怡红)1, Yu-Chao Zhang(张宇超)1, Hui-Chen Fan(范慧晨)1, Cheng Li(李成)2, and Song-Yan Cheng(陈松岩)2
1 Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices, School of Opto-electronic and Communiction Engineering, Xiamen University of Technology, Xiamen 361024, China;
2 Department of Physics, Semiconductor Photonics Research Center, Xiamen University, Xiamen 361005, China
Abstract  The diffusion and the activation of phosphorus in phosphorus and fluorine co-implanted Ge after being annealed by excimer laser are investigated. The results prove that the fluorine element plays an important role in suppressing phosphorus diffusion and enhancing phosphorus activation. Moreover, the rapid thermal annealing process is utilized to evaluate and verify the role of fluorine element. During the initial annealing of co-implanted Ge, it is easier to form high bonding energy FnVm clusters which can stabilize the excess vacancies, resulting in the reduced vacancy-assisted diffusion of phosphorus. The maximum activation concentration of about 4.4×1020 cm-3 with a reduced diffusion length and dopant loss is achieved in co-implanted Ge that is annealed at a tailored laser fluence of 175 mJ/cm2. The combination of excimer laser annealing and co-implantation technique provides a reference and guideline for high level n-type doping in Ge and is beneficial to its applications in the scaled Ge MOSFET technology and other devices.
Keywords:  phosphorus diffusion      activation concentration      co-implanted fluorine      germanium      excimer laser annealing  
Received:  31 March 2022      Revised:  20 April 2022      Accepted manuscript online:  07 May 2022
PACS:  85.40.Ry (Impurity doping, diffusion and ion implantation technology)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  52.38.Mf (Laser ablation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61904155), the Science and technology Project of Fujian Provincial Department of Education, China (Grant No. JAT200484), the Natural Science Foundation of Fujian Province, China (Grant No. 2018J05115), and the Scientific Research Projects of Xiamen University of Technology, China (Grant No. YKJCX2020078).
Corresponding Authors:  Chen Wang     E-mail:  chenwang@xmut.edu.cn

Cite this article: 

Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩) Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing 2022 Chin. Phys. B 31 098503

[1] Chui C O, Ramanathan S, Triplett B, McIntyre P C and Saraswat K C 2002 IEEE Electron Dev. Lett. 23 473
[2] Park J H, Kuzum D, Jung W S and Saraswat K C 2011 IEEE Electron Dev. Lett. 32 234
[3] Li C, Xue C L, Li Y M, Li C B, Cheng B W and Wang Q M 2015 Chin. Phys. B 24 038502
[4] Baldassarre L, Sakat E, Frigerio J, Samarelli A, Gallacher K, Calandrini E, Isella G, Paul D J, Ortolani M and Biagioni P 2015 Nano Lett. 15 7225
[5] Yun Q X, Li M, An X, Lin M, Liu P Q, Li Z Q, Zhang B X, Xia Y X, Zhang H and Zhang X 2014 Chin. Phys. B 23 118506
[6] Skarlatos D, Ioannou-Sougleridis V, Barozzi M, Pepponi G, Vouroutzis N Z, Velessiotis D, Stoemenos J, Zographos N and Colombeau B P 2018 ECS Trans. 86 51
[7] Chui C O, Gopalakrishnan K, Griffin P B, Plummer J D and Saraswat K C 2003 Appl. Phys. Lett. 83 3275
[8] Carroll M S and Koudelka R 2006 Semicond. Sci. Technol. 22 S164
[9] Yu B, Wang Y, Wang H, Xiang Q, Riccobene C, Talwar S and Lin M R 1999 IEDM Tech. Dig. 509
[10] Wang C, Li C, Huang S H, Lu W, Yan G M, Lin G Y, Wei J B, Huang W, Lai H K and Chen S Y 2013 Appl. Phys. Express 6 106501
[11] Milazzo R, Napolitani E, Impellizzeri G, Fisicaro G, Boninelli S, Cuscuna M, De Salvador D, Mastromatteo M, Italia M and La Magna A 2014 J. Appl. Phys. 115 053501
[12] Jiménez A, Carturan S, Milazzo R, Datas A, de Salvador D, del Cañizo C and Napolitani E 2020 Semicond. Sci. Technol. 35 065002
[13] Pastor D, Gandhi H H, Monmeyran C P, Akey A J, Milazzo R, Cai Y, Napolitani E, Gwilliam R M, Crowe I F and Michel J 2018 J. Appl. Phys. 123 165101
[14] Milazzo R, Impellizzeri G, Cuscuná M, De Salvador D, Mastromatteo M, La Magna A, Fortunato G, Priolo F, Privitera V and Carnera A 2016 Mater. Sci. Semicond. Process. 42 19
[15] Brotzmann S, Bracht H, Hansen J L, Larsen A N, Simoen E, Haller E E, Christensen J S and Werner P 2008 Phys. Rev. B 77 235207
[16] Stathopoulos S, Tsetseris L, Pradhan N, Colombeau B and Tsoukalas D 2015 J. Appl. Phys. 118 135710
[17] Baik S, Kwon H, Paeng C, Zhang H, Kalkofen B, Jang J E, Kim Y and Kwon H J 2019 IEEE Electron Dev. Lett. 40 1507
[18] Chroneos A, Grimes R W and Bracht H 2009 J. Appl. Phys. 106 063707
[19] Impellizzeri G, Boninelli S, Priolo F, Napolitani E, Spinella C, Chroneos A and Bracht H 2011 J. Appl. Phys. 109 113527
[20] El Mubarek H 2013 J. Appl. Phys. 114 223512
[21] Monmeyran C, Crowe I F, Gwilliam R M, Heidelberger C, Napolitani E, Pastor D, Gandhi H H, Mazur E, Michel J and Agarwal A M 2018 J. Appl. Phys. 123 161524
[22] Liu J, Wang G, Li J, Kong Z and Radamson H H 2020 J. Mater. Sci.:Mater. Electron. 31 161
[23] Impellizzeri G, Napolitani E, Boninelli S, Fisicaro G, Cuscuná M, Milazzo R, Magna A L, Fortunato G, Priolo F and Privitera V 2013 J. Appl. Phys. 113 113505
[24] Wang C, Li C, Huang S H, Lu W F, Yan G M, Zhang M T, Wu H D, Lin G Y, Wei J B, Huang W, Lai H K and Chen S Y 2014 Appl. Surf. Sci. 300 208
[25] Wang C, Li C, Lin G Y, Lu W F, Wei J B, Huang W, Lai H K, Chen S Y, Di Z F and Zhang M 2014 IEEE Trans. Electron Dev. 61 3060
[1] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[2] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
[3] Micron-sized diamond particles containing Ge-V and Si-V color centers
Hang-Cheng Zhang(章航程), Cheng-Ke Chen(陈成克), Ying-Shuang Mei(梅盈爽), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2019, 28(7): 076103.
[4] Fabrication of large-scale graphene/2D-germanium heterostructure by intercalation
Hui Guo(郭辉), Xueyan Wang(王雪艳), De-Liang Bao(包德亮), Hong-Liang Lu(路红亮), Yu-Yang Zhang(张余洋), Geng Li(李更), Ye-Liang Wang(王业亮), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(7): 078103.
[5] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[6] Research on SEE mitigation techniques using back junction and p+ buffer layer in domestic non-DTI SiGe HBTs by TCAD
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏). Chin. Phys. B, 2019, 28(6): 068503.
[7] Improved performance of Ge n+/p diode by combining laser annealing and epitaxial Si passivation
Chen Wang(王尘), Yihong Xu(许怡红), Cheng Li(李成), Haijun Lin(林海军). Chin. Phys. B, 2018, 27(1): 018502.
[8] An investigation of ionizing radiation damage in different SiGe processes
Pei Li(李培), Mo-Han Liu(刘默寒), Chao-Hui He(贺朝会), Hong-Xia Guo(郭红霞), Jin-Xin Zhang(张晋新), Ting Ma(马婷). Chin. Phys. B, 2017, 26(8): 088503.
[9] Properties of n-Ge epilayer on Si substrate with in-situ doping technology
Shi-Hao Huang(黄诗浩), Cheng Li(李成), Cheng-Zhao Chen(陈城钊), Chen Wang(王尘), Wen-Ming Xie(谢文明), Shu-Yi Lin(林抒毅), Ming Shao(邵明), Ming-Xing Nie(聂明星), Cai-Yun Chen(陈彩云). Chin. Phys. B, 2016, 25(6): 066601.
[10] High-speed waveguide-integrated Ge/Si avalanche photodetector
Hui Cong(丛慧), Chunlai Xue(薛春来), Zhi Liu(刘智), Chuanbo Li(李传波), Buwen Cheng(步成文), Qiming Wang(王启明). Chin. Phys. B, 2016, 25(5): 058503.
[11] High-performance germanium n+/p junction by nickel-induced dopant activation of implanted phosphorus at low temperature
Wei Huang(黄巍), Chao Lu(陆超), Jue Yu(余珏), Jiang-Bin Wei(魏江镔), Chao-Wen Chen(陈超文), Jian-Yuan Wang(汪建元), Jian-Fang Xu(徐剑芳), Chen Wang(王尘), Cheng Li(李成), Song-Yan Chen(陈松岩), Chun-Li Liu(刘春莉), Hong-Kai Lai(赖虹凯). Chin. Phys. B, 2016, 25(5): 057304.
[12] Modulation of WNx/Ge Schottky barrier height by varying N composition of tungsten nitride
Wei Jiang-Bin (魏江镔), Chi Xiao-Wei (池晓伟), Lu Chao (陆超), Wang Chen (王尘), Lin Guang-Yang (林光杨), Wu Huan-Da (吴焕达), Huang Wei (黄巍), Li Cheng (李成), Chen Song-Yan (陈松岩), Liu Chun-Li (刘春莉). Chin. Phys. B, 2015, 24(7): 077306.
[13] Pattern transition from nanohoneycomb to nanograss on germanium by gallium ion bombardment
Zheng Xiao-Hu (郑晓虎), Zhang Miao (张苗), Huang An-Ping (黄安平), Xiao Zhi-Song (肖志松), Paul K Chu (朱剑豪), Wang Xi (王曦), Di Zeng-Feng (狄增峰). Chin. Phys. B, 2015, 24(5): 056801.
[14] High performance silicon waveguide germanium photodetector
Li Chong (李冲), Xue Chun-Lai (薛春来), Li Ya-Ming (李亚明), Li Chuan-Bo (李传波), Cheng Bu-Wen (成步文), Wang Qi-Ming (王启明). Chin. Phys. B, 2015, 24(3): 038502.
[15] Concentration effect of the near-infrared quantum cutting of 1788-nm luminescence of Tm3+ ion in (Y1-xTmx)3Al5O12 powder phosphor
Chen Xiao-Bo (陈晓波), Li Song (李崧), Ding Xian-Lin (丁贤林), Yang Xiao-Dong (杨小冬), Liu Quan-Lin (刘泉林), Gao Yan (高燕), Sun Ping (孙萍), Yang Guo-Jian (杨国建). Chin. Phys. B, 2014, 23(8): 087809.
No Suggested Reading articles found!