CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers |
Ying-Yi Tian(田颖异)1, Shuan-Hu Wang(王拴虎)1, †, Gang Li(李刚)3, Hao Li(李豪)1, Shu-Qin Li(李书琴)1, Yang Zhao(赵阳)1, Xiao-Min Cui(崔晓敏)1, Jian-Yuan Wang(王建元)1, Lv-Kuan Zou(邹吕宽)2, and Ke-Xin Jin(金克新)1,, ‡ |
1 Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Science, Northwestern Polytechnical University, Xi’an 710072, China 2 High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China 3 School of Science and Technology, Tianjin University of Finance and Economics, Tianjin 300222, China |
|
|
Abstract In this work, we report the reorientation of magnetization by spin–orbit torque (SOT) in YIG/Pt bilayers. The SOT is investigated by measuring the spin Hall magnetoresistance (SMR), which is highly sensitive to the direction of magnetic moment of YIG. An external in-plane rotating magnetic field which is applied to the YIG/Pt bilayers, and the evolutions of SMR under different injected currents in the Pt layer, result in deviation of SMR curve from the standard shape. We conclude that the SOT caused by spin accumulation near the interface between YIG and Pt can effectively reorient the in-plane magnetic moment of YIG. This discovery provides an effective way to modulate YIG magnetic moments by electrical methods.
|
Received: 12 August 2020
Revised: 31 August 2020
Accepted manuscript online: 09 September 2020
|
Fund: the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JM-088), the National Natural Science Foundation of China (Grant Nos. 51572222, 51701158, and 51872241), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102017jc01001 and 310201911cx044). |
Corresponding Authors:
†Corresponding author. E-mail: shwang2015@nwpu.edu.cn ‡Corresponding author. E-mail: jinkx@nwpu.edu
|
Cite this article:
Ying-Yi Tian(田颖异), Shuan-Hu Wang(王拴虎), Gang Li(李刚), Hao Li(李豪), Shu-Qin Li(李书琴), Yang Zhao(赵阳), Xiao-Min Cui(崔晓敏), Jian-Yuan Wang(王建元), Lv-Kuan Zou(邹吕宽), and Ke-Xin Jin(金克新) Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers 2020 Chin. Phys. B 29 117504
|
[1] |
|
[2] |
|
[3] |
|
[4] |
Kiselev S I Sankey J C Krivorotov I N Emley N C Schoelkopf R J Buhrman R A Ralph D C 2003 Nature 425 380 DOI: 10.1038/nature01967
|
[5] |
|
[6] |
|
[7] |
Feng X Y Zhang Q H Zhang H W Zhang Y Zhong R Lu B W Cao J W Fan X L 2019 Chin. Phys. B 28 107105 DOI: 10.1088/1674-1056/ab425e
|
[8] |
|
[9] |
|
[10] |
Chen X Z Zarzuela R Zhang J Song C Zhou X F Shi G Y Li F Zhou H A Jiang W J Pan F Tserkovnyak Y 2018 Phys. Rev. Lett. 120 207204 DOI: 10.1103/PhysRevLett.120.207204
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
Fan Y Upadhyaya P Kou X Lang M Takei S Wang Z Tang J He L Chang L-T Montazeri M Yu G Jiang W Nie T Schwartz R N Tserkovnyak Y Wang K L 2014 Nat. Mater. 13 699 DOI: 10.1038/nmat3973
|
[18] |
Chen X Zhou X Cheng R Song C Zhang J Wu Y Ba Y Li H Sun Y You Y Zhao Y Pan F 2019 Nat. Mater. 18 931 DOI: 10.1038/s41563-019-0424-2
|
[19] |
An K Olsson K S Weathers A Sullivan S Chen X Li X Marshall L G Ma X Klimovich N Zhou J Shi L Li X 2016 Phys. Rev. Lett. 117 107202 DOI: 10.1103/PhysRevLett.117.107202
|
[20] |
Wang S H Li G Guo E J Zhao Y Wang J Y Zou L K Yan H Cai J W Zhang Z T Wang M Tian Y Y Zheng X L Sun J R Jin K X 2018 Phys. Rev. Mater. 2 051401 DOI: 10.1103/PhysRevMaterials.2.051401
|
[21] |
|
[22] |
Uchida K Takahashi S Harii K Ieda J Koshibae W Ando K Maekawa S Saitoh E 2008 Nature 455 778 DOI: 10.1038/nature07321
|
[23] |
Chen Y-T Takahashi S Nakayama H Althammer M Goennenwein S Saitoh E Bauer G 2013 Phys. Rev. B 87 144411 DOI: 10.1103/PhysRevB.87.144411
|
[24] |
Nakayama H Althammer M Chen Y T Uchida K Kajiwara Y Kikuchi D Ohtani T Geprags S Opel M Takahashi S Gross R Bauer G E Goennenwein S T Saitoh E 2013 Phys. Rev. Lett. 110 206601 DOI: 10.1103/PhysRevLett.110.206601
|
[25] |
Liu Q Meng K Cai Y Qian X Wu Y Zheng S Jiang Y 2018 Appl. Phys. Lett. 112 022402 DOI: 10.1063/1.5006115
|
[26] |
Mendil J Trassin M Bu Q Fiebig M Gambardella P 2019 Appl. Phys. Lett. 114 172404 DOI: 10.1063/1.5090205
|
[27] |
|
[28] |
Uchida K Adachi H Ota T Nakayama H Maekawa S Saitoh E 2010 Appl. Phys. Lett. 97 172505 DOI: 10.1063/1.3507386
|
[29] |
|
[30] |
|
[31] |
Mendil J Trassin M Bu Q Schaab J Baumgartner M Murer C Dao P T Vijayakumar J Bracher D Bouillet C 2019 Phys. Rev. Mater. 3 034403 DOI: 10.1103/PhysRevMaterials.3.034403
|
[32] |
Wang C T Liang X F Zhang Y Liang X Zhu Y P Qin J Gao Y Peng B Sun N X Bi L 2017 Phys. Rev. B 96 224403 DOI: 10.1103/PhysRevB.96.224403
|
[33] |
Krichevtsov B B Gastev S V Suturin S M Fedorov V V Korovin A M Bursian V E Banshchikov A G Volkov M P Tabuchi M Sokolov N S 2017 Sci. Technol. Adv. Mat. 18 351 DOI: 10.1080/14686996.2017.1316422
|
[34] |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|