Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117504    DOI: 10.1088/1674-1056/abb666
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers

Ying-Yi Tian(田颖异)1, Shuan-Hu Wang(王拴虎)1, †, Gang Li(李刚)3, Hao Li(李豪)1, Shu-Qin Li(李书琴)1, Yang Zhao(赵阳)1, Xiao-Min Cui(崔晓敏)1, Jian-Yuan Wang(王建元)1, Lv-Kuan Zou(邹吕宽)2, and Ke-Xin Jin(金克新)1,, ‡
1 Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
2 High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
3 School of Science and Technology, Tianjin University of Finance and Economics, Tianjin 300222, China
Abstract  

In this work, we report the reorientation of magnetization by spin–orbit torque (SOT) in YIG/Pt bilayers. The SOT is investigated by measuring the spin Hall magnetoresistance (SMR), which is highly sensitive to the direction of magnetic moment of YIG. An external in-plane rotating magnetic field which is applied to the YIG/Pt bilayers, and the evolutions of SMR under different injected currents in the Pt layer, result in deviation of SMR curve from the standard shape. We conclude that the SOT caused by spin accumulation near the interface between YIG and Pt can effectively reorient the in-plane magnetic moment of YIG. This discovery provides an effective way to modulate YIG magnetic moments by electrical methods.

Keywords:  spin-orbit torque      yttrium iron garnet      reorientation of magnetization      spin Hall magnetoresistance  
Received:  12 August 2020      Revised:  31 August 2020      Accepted manuscript online:  09 September 2020
Fund: the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JM-088), the National Natural Science Foundation of China (Grant Nos. 51572222, 51701158, and 51872241), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102017jc01001 and 310201911cx044).
Corresponding Authors:  Corresponding author. E-mail: shwang2015@nwpu.edu.cn Corresponding author. E-mail: jinkx@nwpu.edu   

Cite this article: 

Ying-Yi Tian(田颖异), Shuan-Hu Wang(王拴虎), Gang Li(李刚), Hao Li(李豪), Shu-Qin Li(李书琴), Yang Zhao(赵阳), Xiao-Min Cui(崔晓敏), Jian-Yuan Wang(王建元), Lv-Kuan Zou(邹吕宽), and Ke-Xin Jin(金克新) Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers 2020 Chin. Phys. B 29 117504

Fig. 1.  

[(a) and (b)] Normalized VISHEH curves of YIG(5 nm)/Pt and YIG(3 nm)/Pt bilayers, respectively. (c) Schematic diagram of experimental setup with inset indicating optical image of YIG(3 nm)/Pt sample. The unit 1 Oe = 79.5775 A⋅m−1.

Fig. 2.  

(a) YIG(5 nm)/Pt SMR curves with different values of Je under external magnetic field of H = 1500 Oe. (b) YIG(5 nm)/Pt SMR curves with Je = 1 ° 106 A/cm2 versus in-plane rotation angle under magnetic field of 10, 6, and 4 Oe.

Fig. 3.  

Curves of normalized SMR–β versus β for the YIG(5 nm)/Pt sample with driving current Je = 1 × 105 (a), 2 × 105 (b), 1 × 106 (c), and 2 × 106 A/cm2 (d) under external magnetic field 4 Oe.

Fig. 4.  

Relationships between theoretical value β and actual value β′ in YIG(5 nm)/Pt sample under different values of (a) driving current Je and (b) H, with insert showing that antidamping torque is applied to M, causing M to deviate from the direction of external magnetic field H.

Fig. 5.  

Curves of normalized SMR versus β for driving current Je = 1 × 103 A/cm2 (grey dots) and 1 × 105 A/cm2 (red dots) along easy axis of YIG(3 nm)/Pt sample under external magnetic field H = 4 Oe.

[1]
Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1 DOI: 10.1016/0304-8853(96)00062-5
[2]
Berger L 1996 Phys. Rev. B 54 9353 DOI: 10.1103/PhysRevB.54.9353
[3]
Katine J A Albert F J Buhrman R A Myers E B Ralph D C 2000 Phys. Rev. Lett. 84 3149 DOI: 10.1103/PhysRevLett.84.3149
[4]
Kiselev S I Sankey J C Krivorotov I N Emley N C Schoelkopf R J Buhrman R A Ralph D C 2003 Nature 425 380 DOI: 10.1038/nature01967
[5]
Liu L Pai C F Li Y Tseng H W Ralph D C Buhrman R A 2012 Science 336 555 DOI: 10.1126/science.1218197
[6]
Ralph D C Stiles M D 2008 J. Magn. Magn. Mater. 320 1190 DOI: 10.1016/j.jmmm.2007.12.019
[7]
Feng X Y Zhang Q H Zhang H W Zhang Y Zhong R Lu B W Cao J W Fan X L 2019 Chin. Phys. B 28 107105 DOI: 10.1088/1674-1056/ab425e
[8]
Li S Goolaup S Kwon J Luo F Gan W Lew W S 2017 Sci. Rep. 7 972 DOI: 10.1038/s41598-017-01079-7
[9]
Ma Q Li Y Gopman D B Kabanov Y P Shull R D Chien C L 2018 Phys. Rev. Lett. 120 117703 DOI: 10.1103/PhysRevLett.120.117703
[10]
Chen X Z Zarzuela R Zhang J Song C Zhou X F Shi G Y Li F Zhou H A Jiang W J Pan F Tserkovnyak Y 2018 Phys. Rev. Lett. 120 207204 DOI: 10.1103/PhysRevLett.120.207204
[11]
Stiles M D Zangwill A 2002 Phys. Rev. B 66 81 DOI: 10.1103/PhysRevB.66.014407
[12]
Liu L Lee O J Gudmundsen T J Ralph D C Buhrman R A 2012 Phys. Rev. Lett. 109 096602 DOI: 10.1103/PhysRevLett.109.096602
[13]
Amin V P Stiles M D 2016 Phys. Rev. B 94 104419 DOI: 10.1103/PhysRevB.94.104419
[14]
Manchon A Zhang S 2009 Phys. Rev. B 79 094422 DOI: 10.1103/PhysRevB.79.094422
[15]
Zhao X Zhang X Yang H Cai W Zhao Y Wang Z Zhao W 2019 Nanotechnology 30 335707 DOI: 10.1088/1361-6528/ab1c02
[16]
Sheng Y Zhang N Wang K Y Ma X Q 2018 Acta Phys. Sin. 67 117501 in Chinese DOI: 10.7498/aps.67.20180216
[17]
Fan Y Upadhyaya P Kou X Lang M Takei S Wang Z Tang J He L Chang L-T Montazeri M Yu G Jiang W Nie T Schwartz R N Tserkovnyak Y Wang K L 2014 Nat. Mater. 13 699 DOI: 10.1038/nmat3973
[18]
Chen X Zhou X Cheng R Song C Zhang J Wu Y Ba Y Li H Sun Y You Y Zhao Y Pan F 2019 Nat. Mater. 18 931 DOI: 10.1038/s41563-019-0424-2
[19]
An K Olsson K S Weathers A Sullivan S Chen X Li X Marshall L G Ma X Klimovich N Zhou J Shi L Li X 2016 Phys. Rev. Lett. 117 107202 DOI: 10.1103/PhysRevLett.117.107202
[20]
Wang S H Li G Guo E J Zhao Y Wang J Y Zou L K Yan H Cai J W Zhang Z T Wang M Tian Y Y Zheng X L Sun J R Jin K X 2018 Phys. Rev. Mater. 2 051401 DOI: 10.1103/PhysRevMaterials.2.051401
[21]
Serga A A Chumak A V Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 264002 DOI: 10.1088/0022-3727/43/26/264002
[22]
Uchida K Takahashi S Harii K Ieda J Koshibae W Ando K Maekawa S Saitoh E 2008 Nature 455 778 DOI: 10.1038/nature07321
[23]
Chen Y-T Takahashi S Nakayama H Althammer M Goennenwein S Saitoh E Bauer G 2013 Phys. Rev. B 87 144411 DOI: 10.1103/PhysRevB.87.144411
[24]
Nakayama H Althammer M Chen Y T Uchida K Kajiwara Y Kikuchi D Ohtani T Geprags S Opel M Takahashi S Gross R Bauer G E Goennenwein S T Saitoh E 2013 Phys. Rev. Lett. 110 206601 DOI: 10.1103/PhysRevLett.110.206601
[25]
Liu Q Meng K Cai Y Qian X Wu Y Zheng S Jiang Y 2018 Appl. Phys. Lett. 112 022402 DOI: 10.1063/1.5006115
[26]
Mendil J Trassin M Bu Q Fiebig M Gambardella P 2019 Appl. Phys. Lett. 114 172404 DOI: 10.1063/1.5090205
[27]
Lotze J Huebl H Gross R Goennenwein S T B 2014 Phys. Rev. B 90 174419 DOI: 10.1103/PhysRevB.90.174419
[28]
Uchida K Adachi H Ota T Nakayama H Maekawa S Saitoh E 2010 Appl. Phys. Lett. 97 172505 DOI: 10.1063/1.3507386
[29]
Uchida K Ishida M Kikkawa T Kirihara A Murakami T Saitoh E 2014 J. Phys.: Condens. Matter 26 343202 DOI: 10.1088/0953-8984/26/34/343202
[30]
Magginetti D Tian K Tiwari A 2017 Solid State Commun. 249 34 DOI: 10.1016/j.ssc.2016.10.011
[31]
Mendil J Trassin M Bu Q Schaab J Baumgartner M Murer C Dao P T Vijayakumar J Bracher D Bouillet C 2019 Phys. Rev. Mater. 3 034403 DOI: 10.1103/PhysRevMaterials.3.034403
[32]
Wang C T Liang X F Zhang Y Liang X Zhu Y P Qin J Gao Y Peng B Sun N X Bi L 2017 Phys. Rev. B 96 224403 DOI: 10.1103/PhysRevB.96.224403
[33]
Krichevtsov B B Gastev S V Suturin S M Fedorov V V Korovin A M Bursian V E Banshchikov A G Volkov M P Tabuchi M Sokolov N S 2017 Sci. Technol. Adv. Mat. 18 351 DOI: 10.1080/14686996.2017.1316422
[34]
Wang S Li G Wang J Tian Y Zhang H Zou L Sun J Jin K 2018 Chin. Phys. B 27 117201 DOI: 10.1088/1674-1056/27/11/117201
[1] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[2] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[3] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[4] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[5] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[6] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[7] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[8] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[9] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[10] Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators
Liyuan Li(李丽媛), Lina Chen(陈丽娜), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2020, 29(11): 117102.
[11] A review of current research on spin currents and spin-orbit torques
Xiao-Yu Feng(冯晓玉), Qi-Han Zhang(张琪涵), Han-Wen Zhang(张瀚文), Yi Zhang(张祎), Rui Zhong(钟瑞), Bo-Wen Lu(卢博文), Jiang-Wei Cao(曹江伟), Xiao-Long Fan(范小龙). Chin. Phys. B, 2019, 28(10): 107105.
[12] Spin Seebeck effect and spin Hall magnetoresistance in the Pt/Y3Fe5O12 heterostructure under laser-heating
Shuanhu Wang(王拴虎), Gang Li(李刚), Jianyuan Wang(王建元), Yingyi Tian(田颖异), Hongrui Zhang(张洪瑞), Lvkuan Zou(邹吕宽), Jirong Sun(孙继荣), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(11): 117201.
[13] Structure dependence of magnetic properties in yttrium iron garnet by metal-organic decomposition method
Yuan Liu(刘园), Xiang Wang(王翔), Jie Zhu(朱杰), Runsheng Huang(黄润生), Dongming Tang(唐东明). Chin. Phys. B, 2017, 26(5): 057501.
No Suggested Reading articles found!