Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077402    DOI: 10.1088/1674-1056/abe0c6

Fabrication and characterization of Al-Mn superconducting films for applications in TES bolometers

Qing Yu(余晴)1,2, Yi-Fei Zhang(张翼飞)3, Chang-Hao Zhao(赵昌昊)1,2, Kai-Yong He(何楷泳)1,2, Ru-Tian Huang(黄汝田)1,2, Yong-Cheng He(何永成)1,2, Xin-Yu Wu(吴歆宇)1,2, Jian-She Liu(刘建设)1,2, and Wei Chen(陈炜)1,2,4,†
1 Department of Microelectronics and Nanoelectronics, Tsinghua University, Beijing 100084, China;
2 Beijing National Research Center for Information Science and Technology, Beijing 100084, China;
3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
4 Tsinghua University Future Chip Technology Advanced Innovation Center, Beijing 100084, China
Abstract  Superconducting transition edge sensor (TES) bolometers require superconducting films to have controllable transition temperatures Tc in different practical applications. The value of Tc strongly affects thermal conductivity and thermal noise performance of TES detectors. Al films doped with Mn (Al-Mn) of different concentrations can accomplish tunable Tc. A magnetron sputtering machine is used to deposit the Al-Mn films in this study. Fabrication parameters including sputtering pressure and annealing process are studied and their influences on Tc and superconducting transition width ΔTc are optimized. The Al-Mn films with Δ Tc below 1.0 mK for Tc in a range of 520 mK-580 mK are successfully fabricated.
Keywords:  Al-Mn superconducting films      deposition process      annealing process      superconducting transition edge sensor  
Received:  11 November 2020      Revised:  24 January 2021      Accepted manuscript online:  28 January 2021
PACS:  74.62.Dh (Effects of crystal defects, doping and substitution)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  85.25.Oj (Superconducting optical, X-ray, and γ-ray detectors (SIS, NIS, transition edge))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11653001 and 11653004).
Corresponding Authors:  Wei Chen     E-mail:

Cite this article: 

Qing Yu(余晴), Yi-Fei Zhang(张翼飞), Chang-Hao Zhao(赵昌昊), Kai-Yong He(何楷泳), Ru-Tian Huang(黄汝田), Yong-Cheng He(何永成), Xin-Yu Wu(吴歆宇), Jian-She Liu(刘建设), and Wei Chen(陈炜) Fabrication and characterization of Al-Mn superconducting films for applications in TES bolometers 2021 Chin. Phys. B 30 077402

[1] Irwin K D and Hilton G C 2005 Cryogenic Particle Detection, Topics Appl. Phys. 99 63
[2] Kraus H 1996 Supercond. Sci. Technol. 9 827
[3] Cabrera B, Clarke R M, Colling P, Miller A J, Nam S and Romani R W 1998 Appl. Phys. Lett. 73 735
[4] Ade P A, Aikin R W, Amiri M, et al. 2015 Astrophys. J. 812 176
[5] Hui H, Ade P A R, Ahmed Z, et al. 2016 arXiv: 1607.06861v1 [hep-ph]
[6] Henning J W, Ade P, Aird K A, et al. 2012 arXiv: 1210.4969v1 [hep-ph]
[7] Sayre J T, Ade P, Aird K A, et al. 2012 arXiv: 1210.4968v1 [hep-ph]
[8] Li D, Austermann J E, Beall J A, et al. 2016 J. Low Temp. Phys. 184 66
[9] Niemack M D, Zhao Y, Wollack E, et al. 2008 J. Low Temp. Phys. 151 690
[10] Hattori K, Arnold K, Barron D, Dobbs M, de Haan T, Harrington N, Hasegawa M, Hazumi M, Holzapfel W L, Keating B, Lee A T, Morii H, Myers M J, Smecher G, Suzuki A and Tomaru T 2013 Nucl. Instrum. Methods Phys. Res. A 732 299
[11] Gao H, Liu C, Li Z, Liu Y, Li Y, Li S, Li H, Gao G, Lu F and Zhang X 2017 Radiation Detection Technology and Methods 1 12
[12] Patel U, Divan R, Gades L, Guruswamy T, Yan D, Quaranta O and Miceli A 2020 J. Low Temp. Phys. 199 384
[13] Bennett D A, Horansky R D, Schmidt D R, et al. 2012 Rev. Sci. Instrum. 83 093113
[14] Zhang Q Y, Dong W H, He G F, Li T F, Liu J S and Chen W 2014 Acta Phys. Sin. 63 200303 (in Chinese)
[15] Zhang Q Y, Wang T S, Liu J S, Dong W H, He G F, Li T F, Zhou X X and Chen W 2014 Chin. Phys. B 23 118502
[16] Mo Z H, Lu C, Liu Y, Feng W, Zhang Y, Zhang W, Tan S Y, Zhang H J, Guo C Y, Wang X D, Wang L, Yang R Z, Ren Z G, Zhu X G, Xiong Z H, An Q and Lai X C 2018 Chin. Phys. B 27 067403
[17] Deiker S W, Doriese W, Hilton G C, Irwin K D, Rippard W H, Ullom J N and Vale L R 2004 Appl. Phys. Lett. 85 2137
[18] Young B A, Williams J R, Deikerb S W, Ruggiero S T and Cabrera B 2004 Nucl. Instrum. Methods Phys. Res. A 520 307
[19] Ruggiero S T, Williams A, Rippard W H, Clark A M, Deiker S W, Young B A, Vale L R and Ullom J N 2004 Nucl. Instrum. Methods Phys. Res. A 520 274
[20] Hoevers H F C, Bento A C, Bruijn M P, Gottardi L, Korevaar M A N, Mels W A and Korte P A J 2000 Nucl. Instrum. Methods Phys. Res. A 444 192
[21] Barends R, van Vliet S, Baselmans J J A, Yates S J C, Gao J R and Klapwijk T M 2009 Phys. Rev. B 79 020509
[22] Abrikosov A A and Gor'kov L P 1961 Sov. Phys. JETP 12 1243
[23] Ashcroft N W and Mermin N D 1976 Solid State Physics (New York: Harcourt College Publishers) pp. 687-689
[24] Kaiser A B 1970 J. Phys. C 3 410
[25] Smits F M 1958 Bell System Technical Journal 37 711
[26] Stuart A W, James J K and Martin N 1976 J. Vac. Sci. Technol. 13 145
[27] Zu M, Zhang Y Z and Wen H H 2008 Acta Phys. Sin. 57 7257 (in Chinese)
[28] Chen Y L, Zhang C, He F, Wang D, Wang Y and Feng Q Y 2013 Acta Phys. Sin. 62 197401 (in Chinese)
[29] Lv Y, Huang H, You T G, Ren F, Ou X, Gao B and Wang Z 2020 J. Low Temp. Phys.
[30] Orest A E C 1969 Enhancement of Superconductivity in Thin Aluminum Films, Ph. D. Dissertation (Hamilton: McMaster University)
[1] Controlling the electronic structure of SnO2 nanowires by Mo-doping
Luo Zhi-Hua(罗志华), Tang Dong-Sheng(唐东升), Hai Kuo(海阔), Yu Fang(余芳), Chen Ya-Qi(陈亚奇), He Xiong-Wu(何熊武), Peng Yue-Hua(彭跃华), Yuan Hua-Jun(袁华军), and Yang Yi(羊亿). Chin. Phys. B, 2010, 19(2): 026102.
[2] Infrared studies of oxygen-related complexes in electron-irradiated Cz-Si
Chen Gui-Feng(陈贵锋), Yan Wen-Bo(阎文博), Chen Hong-Jian(陈洪建), Cui Hui-Ying(崔会英), and Li Yang-Xian(李养贤). Chin. Phys. B, 2009, 18(7): 2988-2991.
No Suggested Reading articles found!