Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 127403    DOI: 10.1088/1674-1056/abbbf5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermal stability and thermoelectric properties of Cd-doped nano-layered Cu2Se prepared using NaCl flux method

Jianhua Lu(陆建华)1, Decong Li(李德聪)1,2, Wenting Liu(刘文婷)1, Lanxian Shen(申兰先)1, Jiali Chen(陈家莉)1, Wen Ge(葛文)1, and Shukang Deng(邓书康)1,
1 Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunming 650500, China; 2 Photoelectric Engineering College, Yunnan Open University, Kunming 650500, China
Abstract  Cu2Se is a promising "phonon liquid-electron crystal" thermoelectric material with excellent thermoelectric performance. In this work, Cd-doped Cu2 -xSeCdx (x = 0, 0.0075, 0.01, and 0.02) samples were prepared using NaCl flux method. The solubility of Cd in Cu2Se at room temperature was less than 6%, and a second phase of CdSe was found in the samples with large initial Cd content (x = 0.01 and 0.02). Field-emission scanning electron microscopic image showed that the arranged lamellae formed a large-scale layered structure with an average thickness of approximately 100 nm. Transmission electron microscopy demonstrated that doping of Cd atoms did not destroy the crystal integrity of Cu2Se. A small amount of Cd in Cu2Se could reduce the electrical and thermal conductivities of the material, thus significantly enhancing its thermoelectric performance. With the increase in Cd content in the sample, the carrier concentration decreased and the mobility increased gradually. Thermogravimetric differential thermal analysis showed that no weight loss occurred below the melting point. Excessive Cd doping led to the emergence of the second phase of CdSe in the sample, thus significantly increasing the thermal conductivity of the material. A maximum ZT value of 1.67 at 700 K was obtained in the Cu1.9925SeCd0.0075 sample.
Keywords:  thermoelectric material      Cu2Se doping and second phase      NaCl flux      thermoelectric transfer performance  
Received:  09 July 2020      Revised:  03 September 2020      Accepted manuscript online:  28 September 2020
PACS:  74.72.-h (Cuprate superconductors)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  81.30.Hd (Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder)  
  81.16.Nd (Micro- and nanolithography)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61864012 and 21701140) and the Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province, China.
Corresponding Authors:  Corresponding author. E-mail: skdeng@126.com   

Cite this article: 

Jianhua Lu(陆建华), Decong Li(李德聪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Jiali Chen(陈家莉), Wen Ge(葛文), and Shukang Deng(邓书康) Thermal stability and thermoelectric properties of Cd-doped nano-layered Cu2Se prepared using NaCl flux method 2020 Chin. Phys. B 29 127403

[1] Zhu Z, Zhang Y, Song H and Li X J Appl. Phys. A 124 1 DOI: 10.1007/s00339-017-1423-22018
[2] Tang Y, Li D, Chen Z, Deng S, Sun L, Liu W, Shen L and Deng S Chin. Phys. B 27 118105 DOI: 10.1088/1674-1056/27/11/1181052018
[3] Seebeck T J Annalen Der Physik 82 133 DOI: 10.1002/(ISSN)1521-38892010
[4] Liu H X, Deng S P, Li D C, Shen L X and Deng S K Chin. Phys. B 26 027401 DOI: 10.1088/1674-1056/26/2/0274012017
[5] Liu W, Shen L, Shai X, Sun L, Lu J, Chen J, Ge W and Deng S CrystEngComm 21 6850 DOI: 10.1039/C9CE01258C2019
[6] Toberer E S, Zevalkink A and Snyder G J J. Mater. Chem. 21 15843 DOI: 10.1039/c1jm11754h2011
[7] Gahtori B, Bathula S, Tyagi K, Jayasimhadri M, Srivastava A K, Singh S, Budhani R C and Dhar A Nano Energy 13 36 DOI: 10.1016/j.nanoen.2015.02.0082015
[8] Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T and Snyder G J Nat. Mater. 11 422 DOI: 10.1038/nmat32732012
[9] Ballikaya S, Chi H, Salvador J R and Uher C J. Mater. Chem. A 1 12478 DOI: 10.1039/c3ta12508d2013
[10] Zhong B, Yong Z, Li W, Chen Z, Cui J, Wei L, Xie Y, Hao Q and He Q Appl. Phys. Lett. 105 123902 DOI: 10.1063/1.48965202014
[11] Zhao K, Blichfeld A B, Eikeland E, Qiu P, Ren D, Iversen B B, Shi X and Chen L J. Mater. Chem. A 5 1 DOI: 10.1039/C7TA90001E2017
[12] Zhao L, Nazrul Islam S M K, Wang J, Cortie D L, Wang X, Cheng Z, Wang J, Ye N, Dou S and Shi X Nano Energy 41 164 DOI: 10.1016/j.nanoen.2017.09.0202017
[13] Nunna R, Qiu P, Yin M, Chen H, Hanus R, Song Q, Zhang T, Chou M Y, Agne M T and He J Energy Environ. Sci. 10 1928 DOI: 10.1039/C7EE01737E2017
[14] Olvera A A, Moroz N A, Sahoo P, Ren P, Bailey T P, Page A A, Uher C and Poudeu P F P Energy Environ. Sci. 10 1668 DOI: 10.1039/C7EE01193H2017
[15] Wang L, Chang S, Zheng S, Fang T, Cui W, Bai P P, Yue L and Chen Z G Acs Appl. Mater. Interfaces 27 22612 DOI: 10.1021/acsami.7b060832017
[16] Khot K V, Mali S S, Pawar N B, Kharade R R, Mane R M, Patil P B, Patil P S, Hong C K, Kim J H and Heo J Rsc Adv. 5 40283 DOI: 10.1039/C4RA16311G2015
[17] Ved, Vati, Singh, Ajai and Kumar Dalton Transactions 44 725 DOI: 10.1039/C4DT03320E2015
[18] Shannon R D Acta Crystallographica Section A Foundations of Crystallography 32 751 DOI: 10.1107/S05677394760015511976
[19] Lei Y, Chen Z G, Han G, Min H, Huang L and Jin Z J. Mater. Chem. A 4 9213 DOI: 10.1039/C6TA02998A2016
[20] Shi D, Geng Z and Lam K Energies 12 401 DOI: 10.3390/en120304012019
[21] Zou L, Zhang B P, Ge Z H and Zhang L J Funct. Mater. Lett. 29 1047 DOI: 10.1557/jmr.2014.902014
[22] Zhu Z, Zhang Y, Song H and Li X J Appl. Phys. A 124 871 DOI: 10.1007/s00339-018-2299-52018
[23] Snyder G J, Snyder A H, Wood M, Gurunathan R, Snyder B H and Niu C Adv. Mater. 20 2001537 DOI: 10.1002/adma.2020015372020
[24] Kang S D, Pöhls J H, Aydemir U, Qiu P, Stoumpos C C, Hanus R, White M A, Shi X, Chen L, Kanatzidis M G and Snyder G J Mater. Today Phys. 1 7 DOI: 10.1016/j.mtphys.2017.04.0022017
[25] Chakrabarti D J and Laughlin D E Bulletin of Alloy Phase Diagrams 2 305 DOI: 10.1007/BF028682841981
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[4] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[5] Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene)
Meng Li(李萌), Zuzhi Bai(柏祖志), Xiao Chen(陈晓), Cong-Cong Liu(刘聪聪), Jing-Kun Xu(徐景坤), Xiao-Qi Lan(蓝小琪), and Feng-Xing Jiang(蒋丰兴). Chin. Phys. B, 2022, 31(2): 027201.
[6] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[7] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[8] Grain size and structure distortion characterization of α-MgAgSb thermoelectric material by powder diffraction
Xiyang Li(李西阳), Zhigang Zhang(张志刚), Lunhua He(何伦华), Maxim Avdeev, Yang Ren(任洋), Huaizhou Zhao(赵怀周), and Fangwei Wang(王芳卫)†. Chin. Phys. B, 2020, 29(10): 106101.
[9] Synthesis, physical properties, and annealing investigation of new layered Bi-chalcogenide LaOBiHgS3
Yi Yu(于一), Chunchang Wang(汪春昌), Liang Li(李亮), Qiuju Li(李秋菊), Chao Cheng(程超), Shuting Wang(王舒婷), Changjin Zhang(张昌锦). Chin. Phys. B, 2019, 28(1): 017401.
[10] Improving compatibility between thermoelectric components through current refraction
K Song(宋坤), H P Song(宋豪鹏), C F Gao(高存法). Chin. Phys. B, 2018, 27(7): 077304.
[11] Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics
Da-Quan Liu(刘达权), Yu-Wei Zhang(张玉伟), Hui-Jun Kang(康慧君), Jin-Ling Li(李金玲), Xiong Yang(杨雄), Tong-Min Wang(王同敏). Chin. Phys. B, 2018, 27(4): 047205.
[12] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[13] Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping
Zhiyu Chen(陈志禹), Ruifeng Wang(王瑞峰), Guoyu Wang(王国玉), Xiaoyuan Zhou(周小元), Zhengshang Wang(王正上), Cong Yin(尹聪), Qing Hu(胡庆), Binqiang Zhou(周斌强), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047202.
[14] Nanoscale thermal transport: Theoretical method and application
Yu-Jia Zeng(曾育佳), Yue-Yang Liu(刘岳阳), Wu-Xing Zhou(周五星), Ke-Qiu Chen(陈克求). Chin. Phys. B, 2018, 27(3): 036304.
[15] Thermal stability and electrical transport properties of Ge/Sn-codoped single crystalline β-Zn4Sb3 prepared by the Sn-flux method
Hong-xia Liu(刘虹霞), Shu-ping Deng(邓书平), De-cong Li(李德聪), Lan-xian Shen(申兰先), Shu-kang Deng(邓书康). Chin. Phys. B, 2017, 26(2): 027401.
No Suggested Reading articles found!