Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027201    DOI: 10.1088/1674-1056/ac4230
Special Issue: SPECIAL TOPIC — Organic and hybrid thermoelectrics
TOPICAL REVIEW—Organic and hybrid thermoelectrics Prev   Next  

Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene)

Meng Li(李萌)1,2, Zuzhi Bai(柏祖志)2, Xiao Chen(陈晓)1, Cong-Cong Liu(刘聪聪)2, Jing-Kun Xu(徐景坤)2, Xiao-Qi Lan(蓝小琪)1, and Feng-Xing Jiang(蒋丰兴)1,†
1 Department of Physics, Jiangxi Science & Technology Normal University, Nanchang 330013, China;
2 Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang 330013, China
Abstract  Poly(3,4-ethylenedioxythiophene) (PEDOT) has proved its quite competitive thermoelectric properties in flexible electronics with its excellent electrical and mechanical properties. Since the early discovery of PEDOT, considerable experimental progress has been achieved in optimizing and improving the thermoelectric properties as a promising organic thermoelectric material (OTE). Among them, theoretical research has made significant contributions to its development. Here the basic physics of conductive PEDOT are reviewed based on the combination of theory and experiment. The purpose is to provide a new insight into the development of PEDOT, so as to effectively design and preparation of advanced thermoelectric PEDOT material in the future.
Keywords:  PEDOT      charge transport      organic thermoelectric material      structure  
Received:  01 October 2021      Revised:  23 November 2021      Accepted manuscript online:  11 December 2021
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
  61.82.Pv (Polymers, organic compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51762018, 52073128, and 22065013) and the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20202ACBL204005, 20202ACBL214005, and 20203AEI003).
Corresponding Authors:  Feng-Xing Jiang     E-mail:  f.x.jiang@live.cn

Cite this article: 

Meng Li(李萌), Zuzhi Bai(柏祖志), Xiao Chen(陈晓), Cong-Cong Liu(刘聪聪), Jing-Kun Xu(徐景坤), Xiao-Qi Lan(蓝小琪), and Feng-Xing Jiang(蒋丰兴) Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene) 2022 Chin. Phys. B 31 027201

[1] Zhao W, Ding J, Zou Y, et al. 2020 Chem. Soc. Rev. 49 7210
[2] Du Y, Xu J, Paul B, et al. 2018 Appl. Mater. Today 12 366
[3] Jia Y, Jiang Q, Sun H, et al. 2021 Adv. Mater. 33 2102990
[4] Jiang Q, Sun H, Zhao D, et al. 2020 Adv. Mater. 32 2002752
[5] Russ B, Glaudell A, Urban J J, et al. 2016 Nat. Rev. Mater. 1 16050
[6] Jiang F, Xu J, Lu B, et al. 2008 Chin. Phys. Lett. 25 2202
[7] Bubnova O, Khan Z U, Malti A, et al. 2011 Nat. Mater. 10 429
[8] Liu J, Wang X, Li D, et al. 2015 Macromolecules 48 585
[9] Jeong C, Datta S and Lundstrom M 2011 J. Appl. Phys. 109 073718
[10] Yue R and Xu J 2012 Synth. Met. 162 912
[11] Fan Z and Ouyang J 2019 Adv. Electron. Mater. 5 1800769
[12] Petsagkourakis I, Kim N, Tybrandt K, et al. 2019 Adv. Electron. Mater. 5 1800918
[13] Xu Y, Jia Y, Liu P, et al. 2021 Chem. Eng. J. 404 126552
[14] Kim E G and Brédas J L 2008 J. Am. Chem. Soc. 130 16880
[15] Shi W, Zhao T, Xi J, et al. 2015 J. Am. Chem. Soc. 137 12929
[16] Bubnova O, Khan Z U, Wang H, et al. 2014 Nat. Mater. 13 190
[17] Elschner A, Kirchmeyer S, Lovenich W, Merker U and Reuter K 2011 PEDOT:Principles and applications of an intrinsically conductive polymer (CRC Press) p. 41
[18] Winther-Jensen B and West K 2004 Macromolecules 37 4538
[19] Jiang F, Liu C and Xu J 2017 Chin. Sci. Bull. 62 2063
[20] Liu C, Lu B, Yan J, et al. 2010 Synth. Met. 160 2481
[21] Kim G H, Shao L, Zhang K, et al. 2013 Nat. Mater. 12 719
[22] Aasmundtveit K E, Samuelsen E J, Pettersson L A A, et al. 1999 Synth. Met. 101 561
[23] Dkhissi A, Louwet F, Groenendaal L, et al. 2002 Chem. Phys. Lett. 359 466
[24] Kroon R, Mengistie D A, Kiefer D, et al. 2016 Chem. Soc. Rev. 45 6147
[25] Zade S S and Bendikov M 2006 Org. Lett. 8 5243
[26] Sun H and Autschbach J 2014 J. Chem. Theory Comput. 10 1035
[27] Hummer K, Puschnig P and Ambrosch-Draxl C 2003 Phys. Rev. B 67 184105
[28] Kearley G J, Johnson M R and Tomkinson J 2006 J. Chem. Phys. 124 044514
[29] Cho B, Park K S, Baek J, et al. 2014 Nano Lett. 14 3321
[30] Barpuzary D, Kim K and Park M J 2019 ACS Nano 13 3953
[31] Ouyang J, Xu Q, Chu C W, et al. 2004 Polymer 45 8443
[32] Atanasov S E, Losego M D, Gong B, et al. 2014 Chem. Mater. 26 3471
[33] Franco-Gonzalez J F, Rolland N and Zozoulenko I V 2018 ACS Appl. Mater. Interfaces 10 29115
[34] Kim N, Petsagkourakis I, Chen S, Berggren M, Crispin X, Jonsson M P and Zozoulenko I 2019 Electric transport properites in PEDOT thin films, 4th edn. (CRC Press) p. 55
[35] Muñoz W A, Singh S K, Franco-Gonzalez J F, et al. 2016 Phys. Rev. B 94 205202
[36] Pettersson L A A, Carlsson F, Inganäs O, et al. 1998 Thin Solid Films 313-314 356
[37] Pettersson L A A, Johansson T, Carlsson F, et al. 1999 Synth. Met. 101 198
[38] Levermore P A, Chen L, Wang X, et al. 2007 Adv. Mater. 19 2379
[39] Heeger A J, Sariciftci N S and Namdas E B 2010 Semiconducting and metallic polymers (Oxford University Press) pp. 41-61
[40] Baranovskii S D 2014 Phys. Status Solidi B 251 487
[41] Ambegaokar V, Halperin B I and Langer J S 1971 Phys. Rev. B 4 2612
[42] Aleshin A N, Williams S R and Heeger A J 1998 Synth. Met. 94 173
[43] Xiong J, Jiang F, Zhou W, et al. 2015 RSC Adv. 5 60708
[44] Van de Ruit K, Cohen R I, Bollen D, et al. 2013 Adv. Funct. Mater. 23 5778
[45] Gueye M N, Carella A, Faure-Vincent J, et al. 2020 Prog. Mater. Sci. 108 100616
[46] Sheng P 1980 Phys. Rev. B 21 2180
[47] Vissenberg M C J M and Matters M 1998 Phys. Rev. B 57 12964
[48] Kim G and Pipe K P 2012 Phys. Rev. B 86 085208
[49] Ihnatsenka S, Crispin X and Zozoulenko I V 2015 Phys. Rev. B 92 035201
[50] Maennig B, Pfeiffer M, Nollau A, et al. 2001 Phys. Rev. B 64 195208
[51] Schmechel R 2003 J. Appl. Phys. 93 4653
[52] Kim J Y, Jung J H, Lee D E and Joo J 2002 Synth. Met. 126 311
[53] Noriega R, Rivnay J, Vandewal K, et al. 2013 Nat. Mater. 12 1038
[54] Bubnova O, Berggren M and Crispin X 2012 J. Am. Chem. Soc. 134 16456
[55] Li Z, Sun H, Hsiao C L, et al. 2018 Adv. Electron. Mater. 4 1700496
[56] Venkateshvaran D, Nikolka M, Sadhanala A, et al. 2014 Nature 515 384
[57] Von Mühlenen A, Errien N, Schaer M, et al. 2007 Phys. Rev. B 75 115338
[58] Park Y W 1991 Synth. Met. 45 173
[59] Anthopoulos T D, Anyfantis G C, Papavassiliou G C, et al. 2007 Appl. Phys. Lett. 90 122105
[60] Nicolai H T, Kuik M, Wetzelaer G A H, et al. 2012 Nat. Mater. 11 882
[61] Ju D, Kim D, Yook H, et al. 2019 Adv. Funct. Mater. 29 1905590
[62] Kim N, Kee S, Lee S H, et al. 2014 Adv. Mater. 26 2268
[63] Hosseini E, Kollath O V and Karan K 2020 J. Mater. Chem. C 8 3982
[64] Li X, Liu C, Zhou W, et al. 2019 ACS Appl. Mater. Interfaces 11 8138
[65] Jia Y, Liu C, Liu J, et al. 2019 J. Polym. Sci. Poly. Phys. 57 257
[66] Shi W, Chen J, Xi J, et al. 2014 Chem. Mater. 26 2669
[67] Coropceanu V, Cornil J, Filho D A d S, et al. 2007 Chem. Rev. 107 926
[68] Petsagkourakis I, Pavlopoulou E, Cloutet E, et al. 2018 Org. Electron. 52 335
[69] Glaudell A M, Cochran J E, Patel S N, et al. 2015 Adv. Energy Mater. 5 1401072
[70] Ugur A, Katmis F, Li M, et al. 2015 Adv. Mater. 27 4604
[71] Shi W, Yildirim E, Wu G, et al. 2020 Adv. Theory Simul. 3 2000015
[72] Jiang F X, Liu C C and Xu J K 2022 Advanced PEDOT thermoelectric materials (Elsevier) pp. 257-262
[73] Kaiser A B 1989 Phys. Rev. B 40 2806
[74] Kaiser A B 2001 Rep. Prog. Phys. 64 1
[75] Honma Y, Itoh K, Masunaga H, et al. 2018 Adv. Electron. Mater. 4 1700490
[76] Wang X, Zhang X, Sun L, et al. 2018 Sci. Adv. 4 eaat5780
[77] Dong B X, Wenderott J K and Green P F 2020 Colloid Polym. Sci. 299 439
[78] Rolland N, Franco-Gonzalez J F, Volpi R, et al. 2018 Phys. Rev. Mater. 2 045605
[79] Franco-Gonzalez J F and Zozoulenko I V 2017 J. Phys. Chem. B 121 4299
[80] Wei Q, Mukaida M, Kirihara K, et al. 2014 ACS Macro Lett. 3 948
[81] Palumbiny C M, Liu F, Russell T P, et al. 2015 Adv. Mater. 27 3391
[82] Wei Q, Mukaida M, Naitoh Y, et al. 2013 Adv. Mater. 25 2831
[83] Ishibe T, Tomeda A, Komatsubara Y, et al. 2021 Appl. Phys. Lett. 118 151601
[84] Zozoulenko I, Franco-Gonzalez J F, Gueskine V, et al. 2021 Macromolecules 54 5915
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[4] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[5] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[6] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[7] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[8] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[9] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[10] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[11] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[12] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[13] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[14] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[15] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
No Suggested Reading articles found!