Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047202    DOI: 10.1088/1674-1056/27/4/047202
Special Issue: SPECIAL TOPIC — Recent advances in thermoelectric materials and devices
SPECIAL TOPIC—Recent advances in thermoelectric materials and devices Prev   Next  

Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping

Zhiyu Chen(陈志禹)1, Ruifeng Wang(王瑞峰)2,3, Guoyu Wang(王国玉)2,3, Xiaoyuan Zhou(周小元)4, Zhengshang Wang(王正上)1, Cong Yin(尹聪)1, Qing Hu(胡庆)1, Binqiang Zhou(周斌强)5, Jun Tang(唐军)1,6, Ran Ang(昂然)1,6
1. Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China;
2. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
3. University of Chinese Academy of Sciences, Beijing 100190, China;
4. College of Physics, Chongqing University, Chongqing 401331, China;
5. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;
6. Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China
Abstract  We have systematically studied the thermoelectric properties in Zn-doped SnTe. Strikingly, band convergence and embedded precipitates arising from Zn doping, can trigger a prominent improvement of thermoelectric performance. In particular, the value of dimensionless figure of merit zT has increased by 100% and up to~0.5 at 775 K for the optimal sample with 2% Zn content. Present findings demonstrate that carrier concentration and effective mass play crucial roles on the Seebeck coefficient and power factor. The obvious deviation from the Pisarenko line (Seebeck coefficient versus carrier concentration) due to Zn-doping reveals the convergence of valence bands. When the doping concentration exceeds the solubility, precipitates occur and lead to a reduction of lattice thermal conductivity. In addition, bipolar conduction is suppressed, indicating an enlargement of band gap. The Zn-doped SnTe is shown to be a promising candidate for thermoelectric applications.
Keywords:  thermoelectric materials      chalcogenide      band engineering      precipitation  
Received:  19 December 2017      Revised:  09 January 2018      Accepted manuscript online: 
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
  74.25.F- (Transport properties)  
  74.25.fg (Thermoelectric effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51771126), the Youth Foundation of Science & Technology Department of Sichuan Province, China (Grant No. 2016JQ0051), the Sichuan University Talent Introduction Research Funding (Grand No. YJ201537), the Sichuan University Outstanding Young Scholars Research Funding (Grant No. 2015SCU04A20), the World First-Class University Construction Funding, and the Fundamental and Frontier Research in Chongqing (Grant No. CSTC2015JCYJBX0026).
Corresponding Authors:  Jun Tang, Ran Ang     E-mail:  rang@scu.edu.cn;tangjun@scu.edu.cn

Cite this article: 

Zhiyu Chen(陈志禹), Ruifeng Wang(王瑞峰), Guoyu Wang(王国玉), Xiaoyuan Zhou(周小元), Zhengshang Wang(王正上), Cong Yin(尹聪), Qing Hu(胡庆), Binqiang Zhou(周斌强), Jun Tang(唐军), Ran Ang(昂然) Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping 2018 Chin. Phys. B 27 047202

[1] LaLonde A D, Pei Y and Snyder G J 2011 Energy Environ. Sci. 4 2090
[2] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[3] Kleinke H 2010 Chem. Mater. 22 604
[4] Nolas G S, Cohn J L, Slack G A and Schujman S B 1998 Appl. Phys. Lett. 73 178
[5] Toberer E S, May A F and Snyder G J 2010 Chem. Mater. 22 624
[6] Kauzlarich S M, Brown S R and Snyder G J 2007 Dalton Trans. 0 2099
[7] Makongo J P, Misra D K, Zhou X, Pant A, Shabetai M R, Su X, Uher C, Stokes K L and Poudeu P F 2011 J. Am. Chem. Soc. 133 18843
[8] Fu C, Bai S, Liu Y, Tang Y, Chen L, Zhao X and Zhu T 2015 Nat. Commun. 6 8144
[9] Sales B C, Mandrus D and Williams R K 1996 Science 272 1325
[10] Ren W, Geng H, Zhang Z and Zhang L 2017 Phys. Rev. Lett. 118 245901
[11] Wu H J, Zhao L D, Zheng F S, Wu D, Pei Y L, Tong X, Kanatzidis M G and He J Q 2014 Nat. Commun. 5 4515
[12] Wei T R, Tan G, Wu C F, Chang C, Zhao L D, Li J F, Snyder G J and Kanatzidis M G 2017 Appl. Phys. Lett. 110 053901
[13] Cao B L, Jian J K, Ge B H, Li S M, Wang H, Liu J and Zhao H Z 2017 Chin. Phys. B 26 017202
[14] Li W, Wu Y, Lin S, Chen Z, Li J, Zhang X, Zheng L and Pei Y 2017 ACS Energy Lett. 2 2349
[15] Wang L J, Chang S Y, Zheng S Q, Fang T, Cui W L, Bai P P, Yue L and Chen Z G 2017 ACS Appl. Mater. Interfaces 9 22612
[16] Li Z, Chen Y, Li J, Chen H, Wang L, Zheng S, Wang L, Zheng S and Lu G 2016 Nano Energy 28 78
[17] Rogers L M 1968 J. Phys. D:Appl. Phys. 1 845
[18] Pei Y, Zheng L, Li W, Lin S, Chen Z, Wang Y, Xu X, Yu H, Chen Y and Ge B 2016 Adv. Electron. Mater. 2 1600019
[19] Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z, Chang Y and Pei Y 2017 Adv. Mater. 29 1605887
[20] Zhou M, Gibbs Z M, Wang H, Han Y, Li L and Snyder G J 2016 Appl. Phys. Lett. 109 042102
[21] Tan G, Zhao L D, Shi F, Doak J W, Lo S H, Sun H, Wolverton C, Dravid V P, Uher C and Kanatzidis M G 2014 J. Am. Chem. Soc. 136 7006
[22] Banik A, Shenoy U S, Anand S, Waghmare U V and Biswas K 2015 Chem. Mater. 27 581
[23] Li W, Chen Z, Lin S, Chang Y, Ge B, Chen Y and Pei Y 2015 J. Materiomics 1 307
[24] Wu H, Chang C, Feng D, Xiao Y, Zhang X, Pei Y, Zheng L, Wu D, Gong S, Chen Y, He J, Kanatzidis M G and Zhao L D 2015 Energy Environ. Sci. 8 3298
[25] Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G and Ren Z 2013 Proc. Natl. Acad. Sci. USA 110 13261
[26] Tan G, Shi F, Doak J W, Sun H, Zhao L D, Wang P, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2015 Energy Environ. Sci. 8 267
[27] Dong X, Yu H, Li W, Pei Y and Chen Y 2016 J. Materiomics 2 158
[28] Nasirov Y N, Sultanova N P and Osmanov T G 1969 Phys. Stat. Sol. 35 K39
[29] Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66
[30] Zhou M, Gibbs Z M, Wang H, Han Y M, Xin C N, Li L F and Snyder G J 2014 Phys. Chem. Chem. Phys. 16 20741
[31] Vedeneev V P, Krivoruchko S P and Sabo E P 1998 Semiconductors 32 241
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[4] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[5] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[6] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[7] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[8] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[9] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[10] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[11] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[12] Growth, characterization, and Raman spectra of the 1T phases of TiTe2, TiSe2, and TiS2
Xiao-Fang Tang(唐筱芳), Shuang-Xing Zhu(朱双兴), Hao Liu(刘豪), Chen Zhang(章晨), Qi-Yi Wu(吴旗仪), Zi-Teng Liu(刘子腾), Jiao-Jiao Song(宋姣姣), Xiao Guo(郭晓), Yong-Song Wang(王永松), He Ma(马赫), Yin-Zou Zhao(赵尹陬), Fan-Ying Wu(邬钒颖), Shu-Yu Liu(刘姝妤), Kai-Hui Liu(刘开辉), Ya-Hua Yuan(袁亚华), Han Huang(黄寒), Jun He(何军), Wen Xu(徐文), Hai-Yun Liu(刘海云), Yu-Xia Duan(段玉霞), and Jian-Qiao Meng(孟建桥). Chin. Phys. B, 2022, 31(3): 037103.
[13] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[14] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[15] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
No Suggested Reading articles found!