Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 047307    DOI: 10.1088/1674-1056/ac20c9
Special Issue: TOPICAL REVIEW — Progress in thermoelectric materials and devices
TOPICAL REVIEW—Progress in thermoelectric materials and devices Prev   Next  

Research status and performance optimization of medium-temperature thermoelectric material SnTe

Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群)
Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
Abstract  Thermoelectric materials have the ability to directly convert heat into electricity, which have been extensively studied for decades to solve global energy shortages and environmental problems. As a medium temperature (400-800 K) thermoelectric material, SnTe has attracted extensive attention as a promising substitute for PbTe due to its non-toxic characteristics. In this paper, the research status of SnTe thermoelectric materials is reviewed, and the strategies to improve its performance are summarized and discussed in terms of electrical and thermal transport properties. This comprehensive discussion will provides guidance and inspiration for the research on SnTe.
Keywords:  SnTe      thermoelectric materials      electronic transport      thermal conductivity  
Received:  30 June 2021      Revised:  22 August 2021      Accepted manuscript online:  25 August 2021
PACS:  73.50.Lw (Thermoelectric effects)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  72.15.Eb (Electrical and thermal conduction in crystalline metals and alloys)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
Fund: This research was sponsored by the National Natural Science Foundation of China (Grant Nos. U1504511, 11674083, and 12005194).
Corresponding Authors:  Chao Wang     E-mail:  wangchao@vip.henu.edu.cn

Cite this article: 

Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群) Research status and performance optimization of medium-temperature thermoelectric material SnTe 2022 Chin. Phys. B 31 047307

[1] Mikulska M D Anna 2018 Issue Brief. 6
[2] Dmitriev A V and Zvyagin I P 2010 Phys.-Usp. 53 789
[3] Lei Y, Chen Z, Dargusch M S and Jin Z 2018 Adv. Energy Mater. 8 1701797
[4] Han G, Chen Z G, Drennan J and Zou J 2014 Small 10 2747
[5] Wood and C 1988 Rep. Prog. Phys 51 459
[6] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[7] Rosi F 1968 Solid-State Electron. 11 833
[8] Zebarjadi M, Joshi G, Zhu G, Yu B, Minnich A, Lan Y, Wang X, Dresselhaus M, Ren Z and Chen G 2011 Nano Lett. 11 2225
[9] Yu B, Zebarjadi M, Wang H, Lukas K, Wang H, Wang D, Opeil C, Dresselhaus M, Chen G and Ren Z 2012 Nano Lett. 12 2077
[10] Pei Y, LaLonde A D, Wang H and Snyder G J 2012 Energy Environ. Sci. 5 7963
[11] Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z, Chang Y and Pei Y 2017 Adv. Mater. 29 1605887
[12] Ma Z, Wang C, Lei J, Zhang D, Chen Y, Wang Y, Wang J and Cheng Z 2020 Nanoscale 12 1904
[13] Li J, Tan Q, Li J F, Liu D W, Li F, Li Z Y, Zou M and Wang K 2013 Adv. Funct. Mater. 23 4317
[14] Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G and Ren Z 2013 Proc. Natl. Acad. Sci. USA 110 13261
[15] Shuai J, Mao J, Song S, Zhu Q, Sun J, Wang Y, He R, Zhou J, Chen G, Singh D J and Ren Z 2017 Energy Environ. Sci. 10 799
[16] Ma Z, Lei J, Zhang D, Wang C, Wang J, Cheng Z and Wang Y 2019 ACS Appl. Mater. Interfaces 11 33792
[17] Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q and Uher C 2012 Phys. Rev. Lett. 108 166601
[18] Zhang M, Liu W, Zhang C, Xie S, Li Z, Hua F, Luo J, Wang Z, Wang W, Yan F, Cao Y, Liu Y, Wang Z, Uher C and Tang X 2021 ACS Nano 15 5706
[19] Shuai J, Wang Y, Liu Z, Kim H S, Mao J, Sui J and Ren Z 2016 Nano Energ. 25 136
[20] Ma Z, Wang C, Lei J, Zhang D, Chen Y, Wang J, Cheng Z and Wang Y 2019 ACS Appl. Energy Mater. 2 7354
[21] Shuai J, Liu Z, Kim H S, Wang Y, Mao J, He R, Sui J and Ren Z 2016 J. Mater. Chem. A 4 4312
[22] Chen Z, Ge B, Li W, Lin S, Shen J, Chang Y, Hanus R, Snyder G J and Pei Y 2017 Nat. Commun. 8 13828
[23] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H, Snyde G J and Kim S W 2015 Science 348 109
[24] Rowe D, Shukla V and Savvides N 1981 Nature 290 765
[25] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G and Ren Z 2008 Science 320 634
[26] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E and Kanatzidis M G 2004 Science 303 818
[27] Ma Z, Wang C, Chen Y, Li L and Zhao H 2021 Mater. Today Phys. 17 100350
[28] Huang Q S, Duan B, Chen G, Ye Z C, Li J, Li G D and Zhai P C 2021 Acta Phys. Sin. 70 157401 (in Chinese)
[29] Guo F, Cui B, Li C, Wang Y, Cao J, Zhang X, Ren Z, Cai W and Sui J 2021 Adv. Funct. Mater. 31 2101554
[30] Yan X, Zheng S, Zhou Z, Wu H, Zhang B, Huang Y, Lu X, Han G, Wang G and Zhou X 2021 Nano Energ. 84 105879
[31] Pathak R, Sarkar D and Biswas K 2021 Angew. Chem. Int. Ed. 60 17686
[32] Hwang J, Lee M, Yu B K, Han M K, Kim W, Kim J, Al Rahal Al Orabi R, Wang H, Acharya S, Kim J, Jin Y, Park H, Kim S, Yang S H and Kim S J 2021 J. Mater. Chem. A 9 14851
[33] Wu G, Guo Z, Zhang Q, Wang X, Chen L, Tan X, Sun P, Liu G Q, Yu B and Jiang J 2021 J. Mater. Chem. A 9 13065
[34] Zhang Q, Tan X, Guo Z, Wang H, Xiong C, Man N, Shi F, Hu H, Liu G Q and Jiang J 2021 Chem. Eng. J. 421 127795
[35] Yang Q, Lyu T, Li Z, Mi H, Dong Y, Zheng H, Sun Z, Feng W and Xu G 2021 J. Alloys Compd. 852 156989
[36] Chen Z, Sun Q, Zhang F, Mao J, Chen Y, Li M, Chen Z G and Ang R 2021 Mater. Today Phys. 17 100340
[37] Yang Q, Tu L, Li Z, Mi H and Xu G 2020 J. Alloys Compd. 852 156989
[38] Lyu T, Yang Q, Meng F, He J, Benton A, Chronister C, Li Z and Xu G 2021 Chem. Eng. J. 404 126925
[39] Zhang M, Tang X, Li N, Wang G, Wang G, Liu A, Lu X and Zhou X 2020 Appl. Phys. Lett. 116 173902
[40] Li S, Xin J, Basit A, Long Q and Yang J 2020 Adv. Sci. 7 1903493
[41] Qi X, Huang Y, Wu D, Jiang B, Zhu B, Xu X, Feng J, Jia B, Shu Z and He J 2020 J. Mater. Chem. A 8 2798
[42] Moshwan R, Liu W D, Shi X L, Sun Q, Gao H, Wang Y P, Zou J and Chen Z G 2020 J. Mater. Chem. A 8 3978
[43] Bhat D K and Shenoy U S 2020 J. Alloys Compd. 834 155181
[44] Sarkar D, Ghosh T, Banik A, Roychowdhury S, Sanyal D and Biswas K 2020 Angew. Chem. Int. Ed. 59 11115
[45] Wang L, Hong M, Kawami Y, Sun Q, Nguyen V T, Wang Y, Yue L, Zheng S, Zhu Z, Zou J and Chen Z G 2020 Sustain. Mater. Techno. 25 e00183
[46] Hussain T, Li X, Danish M H, Rehman M U, Zhang J, Li D, Chen G and Tang G 2020 Nano Energ. 73 104832
[47] Moshwan R, Liu W D, Shi X L, Wang Y P, Zou J and Chen Z G 2019 Nano Energ. 65 104056
[48] Yao Z, Li W, Tang J, Chen Z, Lin S, Biswas K, Burkov A and Pei Y 2019 InfoMat 1 571
[49] Tan H, Guo L, Wang G, Wu H, Shen X, Zhang B, Lu X, Wang G, Zhang X and Zhou X 2019 ACS Appl. Mater. Inter. 11 23337
[50] Li S, Yang J, Xin J, Jiang Q, Zhou Z, Hu H, Sun B, Basit A and Li X 2019 ACS Appl. Energy Mater. 2 1997
[51] Guo F, Bo C, Yuan L, Meng X, Jian C, Yang Z, Ran H, Liu W, Wu H and Pennycook S J 2018 Small 14 1802615
[52] Li J Q, Yang N, Li S M, Li Y, Liu F S and Ao W Q 2018 J. Electron. Mater. 47 205
[53] Bhat D K and Shenoy U S 2018 Mater. Today Phys. 4 12
[54] Tan G, Hao S, Hanus R, Zhang X, Anand S, Bailey T P, Rettie A, Su X, Uher C and Dravid V P 2018 ACS Energy Lett. 3 705
[55] Zheng L, Li W, Lin S, Li J, Chen Z and Pei Y 2017 ACS Energy Lett. 2 563
[56] Wang L, Tan X, Liu G, Xu J, Shao H, Yu B, Jiang H, Yue S and Jiang J 2017 ACS Energy Lett. 2 1203
[57] Li S, Li J, Yang L, Liu F, Ao W and Li Y 2016 Mater. Design 108 51
[58] Al Rahal Al Orabi R, Mecholsky N A, Hwang J, Kim W, Rhyee J S, Wee D and Fornari M 2016 Chem. Mater. 28 376
[59] Wu H, Chang C, Feng D, Xiao Y, Zhang X, Pei Y, Zheng L, Wu D, Gong S, Chen Y, He J, Kanatzidis M G and Zhao L D 2015 Energy Environ. Sci. 8 3298
[60] Tan G, Shi F, Hui S, Zhao L D, Uher C, Dravid V P and Kanatzidis M G 2014 J. Mater. Chem. A 2 20849
[61] Zhai J, Wang T, Wang H, Su W, Wang X, Chen T and Wang C 2018 Chin. Phys. B 27 047306
[62] Wang H, Bahk J H, Kang C, Hwang J, Kim K, Kim J, Burke P, Bowers J E, Gossard A C, Shakouri A, et al. 2014 Proc. Natl. Acad. Sci. USA 111 10949
[63] Wang H, Hwang J, Snedaker M L, Kim I h, Kang C, Kim J, Stucky G D, Bowers J and Kim W 2015 Chem. Mater. 27 944
[64] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414
[65] Zhou Z, Yang J, Jiang Q, Lin X, Xin J, Basit A, Hou J and Sun B 2018 Nano Energ. 47 81
[66] Wang L, Hong M, Sun Q, Wang Y, Yue L, Zheng S, Zou J and Chen Z G 2020 ACS Appl. Mater. Interfaces 12 36370
[67] Jing T, Bo G, Lin S, Wang X, Zhang X, Xiong F, Wen L, Yue C and Pei Y 2018 ACS Energy Lett. 3 1969
[68] Zhang Q, Guo Z, Tan X, Mao L, Yin Y, Xiao Y, Hu H, Tan C, Wu Q, Liu G Q, et al. 2020 Chem. Eng. J. 390 124585
[69] Jiang Q, Hu H, Yang J, Xin J, Li S, Viola G and Yan H 2020 ACS Appl. Mater. Inter. 12 23102
[70] Wang T, Wang H, Su W, Zhai J, Yakovleva G, Wang X, Chen T, Romanenko A and Wang C 2020 J. Mater. Chem. C 8 7393
[71] Zhang J W, Wu Z W, Xiang B, Zhou N N, Shi J L and Zhang J X 2020 ACS Appl. Mater. Inter. 12 21863
[72] Fu T, Xin J, Zhu T, Shen J, Fang T and Zhao X 2019 Science Bulletin 64 1024
[73] Kihoi S K, Kim H, Jeong H, Kim H, Ryu J, Yi S and Lee H S 2019 J. Alloys Compd. 806 361
[74] Wang L, Chang S, Zheng S, Fang T, Cui W, Bai P P, Yue L and Chen Z G 2017 ACS Appl. Mater. Interfaces 9 22612
[75] Zhou Y, Wu H, Pei Y, Chang C, Xiao Y, Zhang X, Gong S, He J and Zhao L D 2017 Acta Mater. 125 542
[76] Al Rahal Al Orabi R, Hwang J, Lin C C, Gautier R, Fontaine B, Kim W, Rhyee J S, Wee D and Fornari M 2017 Chem. Mater. 29 612
[77] Zhang L, Wang J, Cheng Z, Sun Q, Li Z and Dou S 2016 J. Mater. Chem. A 4 7936
[78] Banik A, Shenoy U S, Saha S, Waghmare U V and Biswas K 2016 J. Am. Chem. Soc. 138 13068
[79] Zhou Z, Yang J, Jiang Q, Luo Y, Zhang D, Ren Y, He X and Xin J 2016 J. Mater. Chem. A 4 13171
[80] Tan G, Zeier W G, Shi F, Wang P, Snyder G J, Dravid V P and Kanatzidis M G 2015 Chem. Mater. 27 7801
[81] He J, Tan X, Xu J, Liu G, Shao H, Fu Y, Wang X, Liu Z, Xu J, Jiang H and Jiang J 2015 J. Mater. Chem. A 3 19974
[82] Banik A, Shenoy U S, Anand S, Waghmare U V and Biswas K 2015 Chem. Mater. 27 581
[83] Tan G, Zhao L D, Shi F, Doak J W, Lo S H, Sun H, Wolverton C, Dravid V P, Uher C and Kanatzidis M G 2014 J. Am. Chem. Soc. 136 7006
[84] Madelung O, Rossler U and Schulz M 1998 Non-Tetrahedrally Bonded Elements and Binary Compounds I (Berlin:Springer Berlin Heidelberg) p. 144
[85] Mariano A N and Chopra K L 1967 Appl. Phys. Lett. 10 282
[86] Banik A, Ghosh T, Arora R, Dutta M, Pandey J, Acharya S, Soni A, Waghmare U V and Biswas K 2019 Energy Environ. Sci. 12 589
[87] Tan X J, Shao H Z, He J, Liu G Q, Xu J T, Jiang J and Jiang H C 2016 Phys. Chem. Chem. Phys. 18 7141
[88] Wang N, West D, Liu J, Li J, Yan Q, Gu B L, Zhang S B and Duan W 2014 Phys. Rev. B 89 045142
[89] Tan G, Shi F, Doak J W, Sun H, Zhao L D, Wang P, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2015 Energy Environ. Sci. 8 267
[90] Dimmock J O, Melngailis I and Strauss A J 1966 Phys. Rev. Lett. 16 1193
[91] Lowney J R 1986 J. Appl. Phys. 59 2048
[92] Rogers L M 1968 J. Phys. D:Appl. Phys. 1 845
[93] Littlewood P B, Mihaila B, Schulze R K, Safarik D J, Gubernatis J E, Bostwick A, Rotenberg E, Opeil C P, Durakiewicz T, Smith J L and Lashley J C 2010 Phys. Rev. Lett. 105 086404
[94] Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
[95] Liu W D, Yang L, Chen Z G and Zou J 2020 Adv. Mater. 32 1905703
[96] Ioffe A F, Stil'Bans L, Iordanishvili E, Stavitskaya T, Gelbtuch A and Vineyard G 1959 Phys. Today 12 42
[97] Pei Y, Gibbs Z M, Balke B, Zeier W G and Snyder G J 2014 Adv. Energy Mater. 4 9201
[98] Hong M, Chen Z G, Pei Y, Yang L and Zou J 2016 Phys. Rev. B 94 161201
[99] Zhou M, Gibbs Z M, Wang H, Han Y, Xin C, Li L and Snyder G J 2014 Phys. Chem. Chem. Phys. 16 20741
[100] Huo H, Wang Y, Xi L, Yang J and Zhang W 2021 J. Mater. Chem. C 9 5765
[101] Min Y, Kim M, Hwang G T, Ahn C W, Choi J J, Hahn B D, Yoon W H, Moon G D, Park C S and Park C H 2020 Nano Energ. 78 105198
[102] Wang D, Zhang X, Yu Y, Xie L, Wang J, Wang G, He J, Zhou Y, Pang Q, Shao J and Zhao L D 2019 J. Alloys Compd. 773 571
[103] Zhao L D, Zhang X, Wu H, Tan G, Pei Y, Xiao Y, Chang C, Wu D, Chi H, Zheng L, Gong S, Uher C, He J and Kanatzidis M G 2016 J. Am. Chem. Soc. 138 2366
[104] Banik A, Vishal B, Perumal S, Datta R and Biswas K 2016 Energy Environ. Sci. 9 2011
[105] Doi A, Shimano S, Inoue D, Kikitsu T, Hirai T, Hashizume D, Tokura Y and Taguchi Y 2019 APL Mater. 7 091107
[106] Tan G, Shi F, Hao S, Chi H, Bailey T P, Zhao L D, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11507
[107] Tan G, Shi F, Hao S, Chi H, Zhao L D, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2015 J. Am. Chem. Soc. 137 5100
[108] Liang T, Su X, Tan X, Zheng G, She X, Yan Y, Tang X and Uher C 2015 J. Mater. Chem. C 3 8550
[109] Lee M H, Byeon D G, Rhyee J S and Ryu B 2017 J. Mater. Chem. A 5 2235
[110] Banik A and Biswas K 2016 J. Solid State Chem. 242 43
[111] Roychowdhury S and Biswas K 2019 Mater. Res. Express 6 104010
[112] Pei Y, Zheng L, Li W, Lin S, Chen Z, Wang Y, Xu X, Yu H, Chen Y and Ge B 2016 Adv. Electron. Mater. 2 1600019
[113] Acharya S, Dey D, Maitra T, Soni A and Taraphder A 2018 Appl. Phys. Lett. 113 193904
[114] Kihoi S K, Kahiu J N, Kim H, Shenoy U S, Bhat D K, Yi S and Lee H S 2021 J. Mater. Sci. Technol. 85 76
[115] Xie G, Li Z, Luo T, Bai H, Sun J, Xiao Y, Zhao L D, Wu J, Tan G and Tang X 2019 Nano Energ. 69 104395
[116] Roychowdhury S, Shenoy U S, Waghmare U V and Biswas K 2017 J. Mater. Chem. C 5 5737
[117] Banik A and Biswas K 2014 J. Mater. Chem. A 2 9620
[118] Li Z, Zhenag L, Peng Q, Han C, Wang J, Ge Z H, Sun Q, Cheng Z X and Dou S X 2017 J. Mater. Chem. A 6 2507
[119] Tan X, Tan X, Liu G, Xu J, Shao H, Hu H, Jin M, Jiang H and Jiang J 2017 J. Mater. Chem. C 5 7504
[120] Bhat D K and Sandhya S U 2017 J. Phys. Chem. C 121 7123
[121] Slade T J, Pal K, Grovogui J A, Bailey T P, Male J, Khoury J F, Zhou X, Chung D Y, Snyder G J, Uher C, Dravid V P, Wolverton C and Kanatzidis M G 2020 J. Am. Chem. Soc. 142 12524
[122] Brebrick R 1963 J. Phys. Chem. Solids 24 27
[123] Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66
[124] Goldsmid H J 2012 J. Electron. Mater. 41 2126
[125] Heremans J P, Wiendlocha B and Chamoire A M 2012 Energy Environ. Sci. 5 5510
[126] Kulbachinskii V A, Kytin V G, Tarasov P M and Yuzeeva N A 2010 Phys. Solid State 52 1830
[127] Novak M, Sasaki S, Kriener M, Segawa K and Ando Y 2013 Phys. Rev. B 88 140502
[128] Bhat D and Shenoy U 2019 Mater. Today Phys. 11 100158
[129] Zhao L, Wang J, Li J, Liu J, Wang C, Wang J and Wang X 2019 Phys. Chem. Chem. Phys. 21 17978
[130] Minnich A J, Dresselhaus M S, Ren Z F and Chen G 2009 Energy Environ. Sci. 2 466
[131] Ioffe A F 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London:Infosearch) p. 29
[132] Rowe D and Min G 1994 AIP Conf. Proc. 316 339
[133] Zhou Z, Yang J, Jiang Q, Zhang D, Xin J, Li X, Ren Y and He X 2017 J. Am. Ceram. Soc. 100 5723
[134] Iizuka N, Kachru S, Kundu N, Narayan P, Sircar N, Trivedi S P and Wang H 2012 J. High Energy Phys. 2012 193
[135] Liu Z, Mao J, Sui J and Ren Z 2018 Energy Environ. Sci. 11 23
[136] Yang J, Xi L, Qiu W, Wu L, Shi X, Chen L, Yang J, Zhang W, Uher C and Singh D J 2016 NPJ Comput. Mater. 2 15015
[137] Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P and Kanatzidis M G 2011 Nat. Chem. 3 160
[138] Chen Z G, Han G, Lei Y, Cheng L and Jin Z 2012 Prog. Nat. Sci. 22 535
[139] Vineis C J, Shakouri A, Majumdar A and Kanatzidis M G 2010 Adv. Mater. 22 3970
[140] Pei Y and Morelli D T 2009 Appl. Phys. Lett. 94 122112
[141] Tan G, Hang C, Wei L, Yun Z, Tang X, Jian H and Uher C 2015 J. Mater. Chem. C 3 8372
[142] Zhao L D, He J, Wu C I, Hogan T P, Zhou X, Uher C, Dravid V P and Kanatzidis M G 2012 J. Am. Chem. Soc. 134 7902
[143] Moshwan R, Lei Y, Jin Z and Chen Z 2017 Adv. Funct. Mater. 27 1703278
[144] Chen Z, Zhang X, Lin S, Chen L and Pei Y 2018 Natl. Sci. Rev. 5 888
[145] Li X, Liu J, Li S, Zhang J, Li D, Xu R, Zhang Q, Zhang X, Xu B, Zhang Y, Xu F and Tang G 2020 Nano Energ. 67 104261
[146] Tan G, Yun Z and Tang X 2013 Appl. Phys. Lett. 103 183904
[147] Su X, Fu F, Yan Y, Zheng G, Liang T, Zhang Q, Cheng X, Yang D, Chi H and Tang X 2014 Nat. Commun. 5 4908
[148] Liang T, Su X, Yan Y, Zheng G, Zhang Q, Chi H, Tang X and Uher C 2014 J. Mater. Chem. A 2 17914
[149] Tan G, Liu W, Wang S, Yan Y, Li H, Tang X and Uher C 2013 J. Mater. Chem. A 1 12657
[150] Rowe D M 1999 Renew. Energ. 16 1251
[151] Boona S R, Watzman S J and Heremans J P 2016 APL Mater. 4 214418
[152] Singh D J 2010 Funct. Mater. Lett. 3 1000129
[153] Pang H, Qiu Y, Wang D, Qin Y, Huang R, Yang Z, Zhang X and Zhao L D 2021 J. Am. Chem. Soc. 143 8538
[154] Aminzare M, Tseng Y C, Ramakrishnan A, Chen K H and Mozharivskyj Y 2019 Sustain. Energy Fuels 3 251
[155] Muthumari M, Manjula M, Krishnaveni S and Pradheepa K 2020 Mater. Today Proc. 50 2741
[156] Schmidt R D, Case E D, Ni J E, Trejo R M, Lara-Curzio E, Korkosz R J and Kanatzidis M G 2013 J. Mater. Sci. 48 8244
[157] Kihoi S K, Shenoy U S, Bhat D K and Lee H S 2021 J. Mater. Chem. C 9 9922
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[6] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[7] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[8] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[9] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[10] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[11] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[12] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[13] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[14] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[15] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
No Suggested Reading articles found!