Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 106101    DOI: 10.1088/1674-1056/aba09c
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Grain size and structure distortion characterization of α-MgAgSb thermoelectric material by powder diffraction

Xiyang Li(李西阳)1,2, Zhigang Zhang(张志刚)1,3, Lunhua He(何伦华)1,3, Maxim Avdeev4, Yang Ren(任洋)5, Huaizhou Zhao(赵怀周)1, and Fangwei Wang(王芳卫)1,2,3,
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
4 Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
5 X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
Abstract  

Nanostructuring, structure distortion, and/or disorder are the main manipulation techniques to reduce the lattice thermal conductivity and improve the figure of merit of thermoelectric materials. A single-phase α-MgAgSb sample, MgAg0.97Sb0.99, with high thermoelectric performance in near room temperature region was synthesized through a high-energy ball milling with a hot-pressing method. Here, we report the average grain size of 24–28 nm and the accurate structure distortion, which are characterized by high-resolution neutron diffraction and synchrotron x-ray diffraction with Rietveld refinement data analysis. Both the small grain size and the structure distortion have a contribution to the low lattice thermal conductivity in MgAg0.97Sb0.99.

Keywords:  diffraction      grain size      structure distortion      thermoelectric material  
Received:  21 May 2020      Revised:  18 June 2020      Accepted manuscript online:  29 June 2020
PACS:  61.05.cp (X-ray diffraction)  
  61.05.fm (Neutron diffraction)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
Corresponding Authors:  Corresponding author. E-mail: fwwang@iphy.ac.cn   
About author: 
†Corresponding author. E-mail: fwwang@iphy.ac.cn
* Project supported by the National Natural Science Foundation of China (Grant No. 11675255) and the National Key R&D Program of China (Grant No. 2016YFA0401503).

Cite this article: 

Xiyang Li(李西阳), Zhigang Zhang(张志刚), Lunhua He(何伦华), Maxim Avdeev, Yang Ren(任洋), Huaizhou Zhao(赵怀周), and Fangwei Wang(王芳卫)† Grain size and structure distortion characterization of α-MgAgSb thermoelectric material by powder diffraction 2020 Chin. Phys. B 29 106101

Fig. 1.  

(a) Crystalline structure of α-MgAgSb, the space group is I-4c2 (No. 120). (b) The neutron diffraction, and synchrotron x-ray diffraction data of MgAg0.97Sb0.99 measured at room temperature.

Fig. 2.  

Rietveld refinement of MgAg0.97Sb0.99 neutron diffraction data with size parameter refined (a), and without size parameter refined (b).

Neutron diffraction X-ray diffraction
Cell parameters:
a, b 9.1706(7) 9.1723(3)
c 12.7082(9) 12.7100(4)
V3 1068.8(2) 1069.1(2)
Atom parameters:
Mg x −0.0232(4) −0.030(2)
y 0.2837(4) 0.284(2)
z 0.1101(3) 0.1128(9)
Ag1 x {0} {0}
y 0 0
z 0.25 0.25
Ag2 x 0 0
y 0 0
z 0 0
Ag3 x 0.2239(3) 0.2243(4)
y 0.2239(3) 0.2243(4)
z 0.25 0.25
Sb x 0.2353(4) 0.2357(3)
y 0.4751(4) 0.4767(3)
z 0.1180(3) 0.1172(2)
Mg–Sb bond distances:
b1/Å 2.937(5) 2.97(2)
b2/Å 2.948(4) 2.90(2)
b3/Å 2.952(4) 3.02(2)
b4/Å 3.247(4) 3.21(2)
b5/Å 3.460(5) 3.44(2)
b6/Å 3.871(4) 3.90(2)
Mg-Sb bond angles:
b1–b2/(°) 100.2(3) 99.9(3)
b1–b3/(°) 87.0(2) 85.4(3)
b1–b4/(°) 95.2(2) 94.8(3)
b1–b6/(°) 83.1(2) 81.7(3)
b2–b3/(°) 94.7(2) 94.6(3)
b2–b4/(°) 95.6(2) 97.5(3)
b2–b5/(°) 90.0(2) 91.8(3)
b3–b5/(°) 90.0(2) 89.8(3)
b3–b6/(°) 83.5(2) 82.1(3)
b4–b5/(°) 86.0(2) 87.5(3)
b4–b6/(°) 86.0(2) 85.8(3)
b5–b6/(°) 86.6(2) 86.3(2)
X and Y parameters:
X/(°) 0.36431
Y/(°) 0.184(6) 0.0012(2)
Size parameters:
GausSiz/(°)2 0.008(2) 0.000617(3)
Grain size/nm 28(4) 24(1)
Reliability factorsa:
Rwp/% 10.8 9.94
χ2 1.98 10.2
Table 1.  

Refined parameters of MgAg0.97Sb0.99 measured by high resolution neutron diffraction and synchrotron x-ray diffraction, respectively.

Fig. 3.  

Rietveld refinement of MgAg0.97Sb0.99 synchrotron x-ray diffraction data with size parameter refined (a), and without size parameter refined (b).

Fig. 4.  

Static structure distortion in MgAg0.97Sb0.99. The refined bond distances and bond angles of the nearest Mg–Sb bonds are shown in Table 1. The refinement results show a significant distortion of this Mg–Sb formed distorted NaCl structure.

[1]
Takabatake T, Suekuni K, Nakayama T, Kaneshita E 2014 Rev. Mod. Phys. 86 669 DOI: 10.1103/RevModPhys.86.669
[2]
He J, Tritt T M 2017 Science 357 eaak9997 DOI: 10.1126/science.aak9997
[3]
Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, Ren Z 2008 Science 320 634 DOI: 10.1126/science.1156446
[4]
Zhao H, Pokharel M, Chen S, Liao B, Lukas K, Opeil C, Chen G, Ren Z 2012 Nanotechnology 23 505402 DOI: 10.1088/0957-4484/23/50/505402
[5]
Du B S, Jian J K, Liu H T, Liu J, Qiu L 2018 Chin. Phys. B 27 048102 DOI: 10.1088/1674-1056/27/4/048102
[6]
Zhao H, Sui J, Tang Z, Lan Y, Jie Q, Kraemer D, McEnaney K, Guloy A, Chen G, Ren Z 2014 Nano Energy 7 97 DOI: 10.1016/j.nanoen.2014.04.012
[7]
Li D, Zhao H, Li S, Wei B, Shuai J, Shi C, Xi X, Sun P, Meng S, Gu L, Ren Z, Chen X 2015 Adv. Funct. Mater. 25 6478 DOI: 10.1002/adfm.201503022
[8]
Liu Z, Wang Y, Mao J, Geng H, Shuai J, Wang Y, He R, Cai W, Sui J, Ren Z 2016 Adv. Energy Mater. 6 1502269 DOI: 10.1002/aenm.201502269
[9]
Liu Z, Mao J, Sui J, Ren Z 2018 Energy Environ. Sci. 11 23 DOI: 10.1039/C7EE02504A
[10]
Wang J F, Fu X N, Zhang X D, Wang J T, Li X D, Jiang Z Y 2016 Chin. Phys. B 25 086302 DOI: 10.1088/1674-1056/25/8/086302
[11]
Li X, Liu P, Zhao E, Zhang Z, Guidi T, Le M D, Avdeev M, Ikeda K, Otomo T, Kofu M, Nakajima K, Chen J, He L, Ren Y, Wang X L, Wang B T, Ren Z, Zhao H, Wang F 2020 Nat. Commun. 11 942 DOI: 10.1038/s41467-020-14772-5
[12]
Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373 DOI: 10.1038/nature13184
[13]
Li B, Wang H, Kawakita Y, Zhang Q, Feygenson M, Yu H L, Wu D, Ohara K, Kikuchi T, Shibata K, Yamada T, Ning X K, Chen Y, He J Q, Vaknin D, Wu R Q, Nakajima K, Kanatzidis M G 2018 Nat. Mater. 17 226 DOI: 10.1038/s41563-017-0004-2
[14]
Niedziela J L, Bansal D, May A F, Ding J, Lanigan-Atkins T, Ehlers G, Abernathy D L, Said A, Delaire O 2019 Nat. Phys. 15 73 DOI: 10.1038/s41567-018-0298-2
[15]
Rodríguez-Carvajal J 1993 Physica B 192 55 DOI: 10.1016/0921-4526(93)90108-I
[16]
Avdeev M, Hester J R 2018 J. Appl. Crystallogr. 51 1597 DOI: 10.1107/S1600576718014048
[17]
Scheer A, Kruppke H, Heib R 2004 Diffraction Analysis of the Microstructure of Materials 68 Berlin, Heidelberg Springer
[18]
Kirkham M J, dos Santos A M, Rawn C J, Lara-Curzio E, Sharp J W, Thompson A J 2012 Phys. Rev. B 85 144120 DOI: 10.1103/PhysRevB.85.144120
[19]
Cardona M, Merlin R 2006 Light Scattering in Solid IX 108 Berlin, Heidelberg Springer
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[4] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[5] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[6] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[7] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[8] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[9] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[10] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[11] Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene)
Meng Li(李萌), Zuzhi Bai(柏祖志), Xiao Chen(陈晓), Cong-Cong Liu(刘聪聪), Jing-Kun Xu(徐景坤), Xiao-Qi Lan(蓝小琪), and Feng-Xing Jiang(蒋丰兴). Chin. Phys. B, 2022, 31(2): 027201.
[12] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[13] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[14] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[15] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
No Suggested Reading articles found!