|
|
Phase-field simulation of superconductor vortex clustering in the vicinity of ferromagnetic domain bifurcations |
Hasnain Mehdi Jafri1,2, Jing Wang(王静)1,2,†, Chao Yang(杨超)1,2, Jun-Sheng Wang(王俊升)1,2, and Hou-Bing Huang(黄厚兵)1,2 |
1 School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China; 2 Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Superconductors and ferromagnets are highly non-compatible materials due to the natures of their respective electronic states. But when artificially brought together, they develop interesting characteristics, one of which, vortex clustering, is discussed here in this paper. Phase-field and micromagnetic simulations are performed to investigate the superconductor and ferromagnet bilayer, respectively. The ferromagnet with uniaxial anisotropy is observed to develop the maze domain, whereas the superconductor subjected to the influence of the ferromagnetic stray field displays a vortex pattern. Clustered vortices in superconductors at certain locations are observed to be precisely located over magnetic domain bifurcations. The enhanced out-of-plane stray field at bifurcations around the curved domain walls and the convergent Lorentz force due to screening currents in superconductor are attributed to the formation of clusters at bifurcation sites. Segregation of the inter-vortex spacing between straight and bifurcated domain is clearly observed. More importantly, inter-vortex spacing is predicted to serve as a precise tool to map local ferromagnet domain shapes.
|
Received: 30 May 2020
Revised: 18 July 2020
Accepted manuscript online: 25 August 2020
|
PACS:
|
74.20.De
|
(Phenomenological theories (two-fluid, Ginzburg-Landau, etc.))
|
|
74.25.Wx
|
(Vortex pinning (includes mechanisms and flux creep))
|
|
74.25.Uv
|
(Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51972028 and 12004036) and the National Key Research and Development Program of China (Grant No. 2019YFA0307900). |
Corresponding Authors:
†Corresponding author. E-mail: jwang@bit.edu.cn
|
Cite this article:
Hasnain Mehdi Jafri, Jing Wang(王静), Chao Yang(杨超), Jun-Sheng Wang(王俊升), and Hou-Bing Huang(黄厚兵) Phase-field simulation of superconductor vortex clustering in the vicinity of ferromagnetic domain bifurcations 2020 Chin. Phys. B 29 127402
|
[1] Jafri H M, Ma X, Zhao C, Liang D, Huang H, Liu Z and Chen L Q J. Phys.: Condens. Matter 29 505701 DOI: 10.1088/1361-648X/aa8d822017 [2] Martin J I, Velez M, Hoffmann A, Schuller I K and Vicent J Phys. Rev. Lett 83 1022 DOI: 10.1103/PhysRevLett.83.10221999 [3] Jafri H M, Ma X, Zhao C, Huang H, Anwar T, Liu Z and Chen L Q J. Supercond. Nov. Magn. 31 3445 DOI: 10.1007/s10948-018-4586-y2018 [4] He A, Xue C and Zhou Y Chin. Phys. B 27 057402 DOI: 10.1088/1674-1056/27/5/0574022018 [5] Kim K, Ozmetin A, Naugle D and Lyuksyutov I2010 Appl. Phys. Lett. 97 042501 [6] Aladyshkin A Y, Fritzsche J and Moshchalkov V Appl. Phys. Lett. 94 222503 DOI: 10.1063/1.31496982009 [7] Vlasko V, Welp U, Karapetrov G, Novosad V, Rosenmann D, Iavarone M, Belkin A and Kwok W K Phys. Rev. B 77 134518 DOI: 10.1103/PhysRevB.77.1345182008 [8] Silhanek A, Gillijns W, Moshchalkov V, Metlushko V and Ilic B Appl. Phys. Let. 89 182505 DOI: 10.1063/1.23747982006 [9] Cao R, Yang T, Horng L and Wu T J. Supercond. Nov. Magn. 26 2027 DOI: 10.1007/s10948-012-2041-z2013 [10] Jafri H M, Ma X, Huang H, Zhao C, Qazi H I A, Kazmi S B F, Liu Z, Liu L, Shi S Q and Li Y Supercond. Sci. Tech. 32 095002 DOI: 10.1088/1361-6668/ab1dbf2019 [11] Aladyshkin A Y, Silhanek A, Gillijns W and Moshchalkov V Supercond. Sci. Tech. 22 053001 DOI: 10.1088/0953-2048/22/5/0530012009 [12] DiGiorgio C, Bobba F, Cucolo A, Scarfato A, Moore S, Karapetrov G, D'Agostino D, Novosad V, Yefremenko V and Iavarone M Sci. Rep. 6 38557 DOI: 10.1038/srep385572016 [13] Bespalov A, Mel'Nikov A and Buzdin A I Europhys. Lett. 110 37003 DOI: 10.1209/0295-5075/110/370032015 [14] Nishio T, Dao V H, Chen Q, Chibotaru LF, Kadowaki K and Moshchalkov VV Phys. Rev. B 81 020506 DOI: 10.1103/PhysRevB.81.0205062010 [15] Grigorieva I, Escoffier W, Misko V, Baelus B, Peeters F, Vinnikov L Y and Dubonos S Phys. Rev. Lett. 99 147003 DOI: 10.1103/PhysRevLett.99.1470032007 [16] Aladyshkin A Y, Buzdin A, Fraerman A, Mel\'nikov A, Ryzhov D and Sokolov A Phys. Rev. B 68 184508 DOI: 10.1103/PhysRevB.68.1845082003 [17] Buzdin AI and Mel\'nikov A Phys. Rev. B 67 020503 DOI: 10.1103/PhysRevB.67.0205032003 [18] Bending S J and Dodgson M J2005 J. Phys.: Condens. Matter 17 R955 [19] Samokhvalov A, Savinov D, Mel'nikov A and Buzdin A I Phys. Rev. B 82 104511 DOI: 10.1103/PhysRevB.82.1045112010 [20] Cieplak M Z, Adamus Z, Ko\'nczykowski M, Zhu L, Cheng X and Chien C Phys. Rev. B 87 014519 DOI: 10.1103/PhysRevB.87.0145192013 [21] Shapoval T, Metlushko V, Wolf M, Neu V, Holzapfel B and Schultz L Physica C: Superconductivity 470 867 DOI: 10.1016/j.physc.2010.02.0712010 [22] Shapoval T, Metlushko V, Wolf M, Holzapfel B, Neu V and Schultz L Phys. Rev. B 81 092505 DOI: 10.1103/PhysRevB.81.0925052010 [23] Zhang J and Chen L Acta Mater. 53 2845 DOI: 10.1016/j.actamat.2005.03.0022005 [24] Huang H, Ma X, Liu Z, Zhao C, Shi S and Chen L Q Appl. Phys. Lett. 102 042405 DOI: 10.1063/1.47898672013 [25] GoR'Kov L P and Eliashberg G M1968 J. Exp. Theor. Phys. 27 328 [26] Du Q, Gunzburger M D and Peterson J S Phys. Rev. B 51 16194 DOI: 10.1103/PhysRevB.51.161941995 [27] Li M, Gu J, Du L, Zhong H, Zhou L and Chen Q Chin. Phys. B 29 037401 DOI: 10.1088/1674-1056/ab69ef2020 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|