|
|
Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals |
He Li(李贺)1,2, Ming-Wei Ma(马明伟)2,3,†, Shao-Bo Liu(刘少博)2,4, Fang Zhou(周放)2,3,4, and Xiao-Li Dong(董晓莉)2,3,4 |
1 International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We report the structural and electrical transport properties of Fe1 -xCuxSe (x = 0, 0.02, 0.05, 0.10) single crystals grown by a chemical vapor transport method. Substituting Cu for Fe suppresses both the nematicity and superconductivity of FeSe single crystal, and provokes a metal-insulator transition. Our Hall measurements show that the Cu substitution also changes an electron dominance at low temperature of un-doped FeSe to a hole dominance of Cu-doped Fe1 -xCuxSe at x = 0.02 and 0.1, and reduces the sign-change temperature (TR) of the Hall coefficient (R H).
|
Received: 04 August 2020
Revised: 22 September 2020
Accepted manuscript online: 22 October 2020
|
PACS:
|
74.25.F-
|
(Transport properties)
|
|
74.62.Dh
|
(Effects of crystal defects, doping and substitution)
|
|
81.10.Bk
|
(Growth from vapor)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
Fund: Project supported by the National Key Research and Development of China (Grant No. 2018YFA0704200), the National Natural Science Foundation of China (Grant No. 11834016), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000). |
Corresponding Authors:
†Corresponding author. E-mail: mw_ma@iphy.ac.cn
|
Cite this article:
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉) Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals 2020 Chin. Phys. B 29 127404
|
[1] Shibauchi T, Hanaguri T and Matsuda Y J. Phys. Soc. Jpn. 89 102002 DOI: 10.7566/JPSJ.89.1020022020 [2] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K Proc. Natl. Acad. Sci. USA 105 14262 DOI: 10.1073/pnas.08073251052008 [3] Medvedev S, McQueen T M, Troyan A I, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C Nat. Mater. 8 630 DOI: 10.1038/nmat24912009 [4] Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L Phys. Rev. B 82 180520(R) DOI: 10.1103/PhysRevB.82.1805202010 [5] Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J and Chen X H Phys. Rev. B 83 060512(R) DOI: 10.1103/PhysRevB.83.0605122011 [6] Krzton-Maziopa A, Shermadini Z, Pomjakushina E, Pomjakushin V, Bendele M, Amato A, Khasanov R, Luetkens H and Conder K J. Phys.: Condens. Matter 23 052203 DOI: 10.1088/0953-8984/23/5/0522032011 [7] Ying T P, Chen X L, Wang G, Jin S F, Zhou T T, Lai X F, Zhang H and Wang W Y Sci. Rep. 2 426 DOI: 10.1038/srep004262012 [8] Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H Nat. Mater. 14 325 DOI: 10.1038/nmat41552015 [9] Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F and Zhao Z X Phys. Rev. B 92 064515 DOI: 10.1103/PhysRevB.92.0645152015 [10] He S L, He J F, Zhang W H, et al.Nat. Mater. 12 605 DOI: 10.1038/nmat36482013 [11] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T Nat. Commun. 7 12146 DOI: 10.1038/ncomms121462016 [12] Matsuura K, Mizukami Y, Arai Y, et al.Nat. Commun. 8 1143 DOI: 10.1038/s41467-017-01277-x2017 [13] Terao K, Kashiwagi T, Shizu T, Klemm R A and Kadowaki K Phys. Rev. B 100 224516 DOI: 10.1103/PhysRevB.100.2245162019 [14] Sun J P, Ye G Z, Shahi P, Yan J Q, Matsuura K, Kontani H, Zhang G M, Zhou Q, Sales B C, Shibauchi T, Uwatoko Y, Singh D J and Cheng J G Phys. Rev. Lett. 118 147004 DOI: 10.1103/PhysRevLett.118.1470042017 [15] Licciardello S, Buhot J, Lu J, Ayres J, Kasahara S, Matsuda Y, Shibauchi T and Hussey N E Nature 567 213 DOI: 10.1038/s41586-019-0923-y2019 [16] Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H and Pan S H Nat. Phys. 11 543 DOI: 10.1038/NPHYS33712015 [17] Urata T, Tanabe Y, Huynh K K, Yamakawa Y, Kontani H and Tanigaki K Phys. Rev. B 93 014507 DOI: 10.1103/PhysRevB.93.0145072016 [18] Wu M K, Hsu F C, Yeh K W, et al.Physica C 469 340 DOI: 10.1016/j.physc.2009.03.0222009 [19] Yadav A K, Thakur A D and Tomy C V Solid State Commun. 151 557 DOI: 10.1016/j.ssc.2011.01.0102011 [20] Yadav A K, Sanchela A V, Thakur A D and Tomy C V Solid State Commun. 202 8 DOI: 10.1016/j.ssc.2014.10.0272015 [21] Williams A J, McQueen T M, Ksenofontov V, Felser C and Cava R J J. Phys.: Condens. Matter 21 305701 DOI: 10.1088/0953-8984/21/30/3057012009 [22] Huang T W, Chen T K, Yeh K W, Ke C T, Chen C L, Huang Y L, Hsu F C, Wu M K, Wu P M, Avdeev M and Studer A J Phys. Rev. B 82 104502 DOI: 10.1103/PhysRevB.82.1045022010 [23] Schoop L M, Medvedev S A, Ksenofontov V, Williams A, Palasyuk T, Troyan I A, Schmitt J, Casper F, Wang C H, Eremets M, Cava R J and Felser C Phys. Rev. B 84 174505 DOI: 10.1103/PhysRevB.84.1745052011 [24] Shylin S I, Ksenofontov V, Naumov P G, Medvedev S A and Felser C J. Supercond. Nov. Magn. 31 763 DOI: 10.1007/s10948-017-4317-92018 [25] Chareev D, Osadchii E, Kuzmicheva T, Lin J Y, Kuzmichev S, Volkova O and Vasiliev A CrystEngComm 15 1989 DOI: 10.1039/c2ce26857d2013 [26] Chadov S, Schärf D, Fecher G H and Felser C Phys. Rev. B 81 104523 DOI: 10.1103/PhysRevB.81.1045232010 [27] Young B L, Wu J, Huang T W, Yeh K W and Wu M K Phys. Rev. B 81 144513 DOI: 10.1103/PhysRevB.81.1445132010 [28] Watson M D, Yamashita T, Kasahara S, Knafo W, Nardone M, Bèard J, Hardy F, McCollam A, Narayanan A, Blake S F, Wolf T, Haghighirad A A, Meingast C, Schofield A J, Löhneysen H, Matsuda Y, Coldea A I and Shibauchi T Phys. Rev. Lett. 115 027006 DOI: 10.1103/PhysRevLett.115.0270062015 [29] Singh D J Phys. Rev. B 79 153102 DOI: 10.1103/PhysRevB.79.1531022009 [30] Anand V K, Perera P K, Pandey A, Goetsch R J, Kreyssig A and Johnston D C Phys. Rev. B 85 214523 DOI: 10.1103/PhysRevB.85.2145232012 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|