Special Issue:
SPECIAL TOPIC — Recent advances in thermoelectric materials and devices
|
SPECIAL TOPIC—Recent advances in thermoelectric materials and devices |
Prev
Next
|
|
|
Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels |
Ke-Xian Wang(王柯鲜)1, Jun Wang(王俊)1, Yan Li(李艳)2, Tao Zou(邹涛)3, Xiao-Huan Wang(王晓欢)1, Jian-Bo Li(李建波)1, Zheng Cao(曹正)1, Wen-Jing Shi(师文静)1, Xinba Yaer(新巴雅尔)1 |
1. School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia Autonomous Region, China; 2. School of Chemical Engineering, Kang Ba Shi Qu, Ordos, Ordos Institute of Technology, Ordos 017000, Inner Mongolia Autonomous Region, China; 3. Beijing Center for Physical & Chemical Analysis, No. 27 Xi Sanhuan Road, Haidian District, Beijing 100089, China |
|
|
Abstract Strontium titanate (STO) is an n-type oxide thermoelectric material, which has shown great prospects in recent years. The doping of La and Nb into STO can improve its power factor, whereas its thermal conductivity is still very high. Thus, in order to obtain a high thermoelectric figure-of-merit zT, it is very important to reduce its thermal conductivity. In this paper, using a combination of a hydrothermal method and a high-efficiency sintering method, we succeed in preparing a composite of pure STO and LaNb-doped STO, which simultaneously realizes lower thermal conductivity and higher Seebeck coefficient, therefore, the thermoelectric properties of STO are significantly improved. In the SrTiO3/LaNb-SrTiO3 bulk samples, the lowest thermal conductivity is 2.57 W·m-1·K-1 and the highest zT is 0.35 at 1000 K for the STO/La10Nb20-STO sample.
|
Received: 21 December 2017
Revised: 28 January 2018
Accepted manuscript online:
|
PACS:
|
84.60.Rb
|
(Thermoelectric, electrogasdynamic and other direct energy conversion)
|
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
77.84.Cg
|
(PZT ceramics and other titanates)
|
|
81.20.-n
|
(Methods of materials synthesis and materials processing)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61751404, 51702168, and 51665042), the Fund from the State Key Laboratory of New Ceramic and Fine Processing (Tsinghua University), China (Grant No. KF201608), the Fund from the Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, China (Grant No. 151004-K), and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2016BS0507 and 2015MS0509). |
Corresponding Authors:
Jun Wang, Jun Wang
E-mail: wangjun@imut.edu.cn;shinbayaer@imut.edu.cn
|
Cite this article:
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔) Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels 2018 Chin. Phys. B 27 048401
|
[1] |
Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
|
[2] |
Luo Y, Yang J, Li G, Liu M, Xiao Y, Fu L, Li W, Zhu P, Peng J, Gao S and Zhang J 2014 Adv. Energy Mater. 4 1300599
|
[3] |
Luo Y, Yang J, Jiang Q, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y and He X 2016 Adv. Energy Mater. 6 1600007
|
[4] |
Zhao H, Cao B, Li S, Liu N, Shen J, Li S, Jian J, Gu L, Pei Y, Snyder G J, Ren Z and Chen X 2017 Adv. Energy Mater. 7 1700446
|
[5] |
Pei Y, Tan G, Feng D, Zheng L, Tan Q, Xie X, Gong S, Chen Y, Li J F, He J, Kanatzidis M G and Zhao L D 2017 Adv. Energy Mater. 7 1601450
|
[6] |
Fu L, Yang J, Peng J, Jiang Q, Xiao Y, Luo Y, Zhang D, Zhou Z, Zhang M, Cheng Y and Cheng F 2015 J. Mater. Chem. A 3 1010
|
[7] |
Luo Y, Yang J, Liu M, Xiao Y, Fu L, Li W, Zhang D, Zhang M and Cheng Y 2015 J. Mater. Chem. A 3 1251
|
[8] |
Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141
|
[9] |
Liu W, Yin K, Zhang Q, Uher C and Tang X 2017 Natl. Sci. Rev. 4 611
|
[10] |
Gibbs Z M, Ricci F, Li G, Zhu H, Persson K, Ceder G, Hautier G, Jain A and Snyder G J 2017 NPJ Comp. Mater. 3
|
[11] |
Zhao W, Liu Z, Wei P, Zhang Q, Zhu W, Su X, Tang X, Yang J, Liu Y, Shi J, Chao Y, Lin S and Pei Y 2017 Nat. Nanotechnol. 12 55
|
[12] |
Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S, He D, Ji P, Zhu W, Nie X, Su X, Tang X, Shen B, Dong X, Yang J, Liu Y and Shi J 2017 Nature 549 247
|
[13] |
Sangwook Lee K H, Fan Yang, Jiawang Hong, Changhyun Ko, Joonki Suh, Kai Liu, Kevin Wang, Jeffrey J Urban, Xiang Zhang, Chris Dames, Sean A Hartnoll, Olivier Delaire and Junqiao Wu 2017 Science 355 371
|
[14] |
Nunna R, Qiu P, Yin M, Chen H, Hanus R, Song Q, Zhang T, Chou M Y, Agne M T, He J, Snyder G J, Shi X and Chen L 2017 Energ. Environ. Sci. 10 1928
|
[15] |
Cao B, Jian J, Ge B, Li S, Wang H, Liu J and Zhao H 2017 Chin. Phys. B 26 017202
|
[16] |
Wang N, Li H, Ba Y, Wang Y, Wan C, Fujinami K and Koumoto K 2010 J. Electron. Mater. 39 1777
|
[17] |
Wang N, He H, Ba Y, Wan C and Koumoto K 2010 J. Ceram. Soc. Jpn. 118 1098
|
[18] |
Wang Y, Zhang X, Shen L, Bao N, Wan C, Park N H, Koumoto K and Gupta A 2013 Journal of Power Sources 241 255
|
[19] |
Zhang L, Tosho T, Okinaka N and Akiyama T 2007 Mater. Trans. 48 1079
|
[20] |
Kumar S R, Barasheed A Z and Alshareef H N 2013 ACS Appl. Mater. Interfaces 5 7268
|
[21] |
Yu C, Scullin M L, Huijben M, Ramesh R and Majumdar A 2008 Appl. Phys. Lett. 92 191911
|
[22] |
Kovalevsky A V, Aguirre M H, Populoh S, Patrício S G, Ferreira N M, Mikhalev S M, Fagg D P, Weidenkaff A and Frade J R 2017 J. Mater. Chem. A 5 3909
|
[23] |
Zhang G, Wang W and Li X 2008 Adv. Mater. 20 3654
|
[24] |
Dawson J A and Tanaka I 2014 J. Phys. Chem. C 118 25765
|
[25] |
Maria Ibáñez R Z, Stéphane Gorsse, Jiandong Fan, Silvia Ortega, Doris Cadavid, Joan Ramon Morante, Jordi Arbio and Andreu Cabot 2013 ASC Nano 7 2573
|
[26] |
Park N H, Akamatsu T, Itoh T, Izu N and Shin W 2015 Materials 8 3992
|
[27] |
Marcus Scheele N O, Igor Veremchuk, Sven-Ole Peters, Alexander Littig, Andreas Kornowski, Christian Klinke and Horst Weller 2011 ASC Nano 5 8541
|
[28] |
Chen X, Wang Y C and Ma Y M 2010 J. Phys. Chem. C 114 9096
|
[29] |
Wang J, Zhang B Y, Kang H J, Li Y, Yaer X, Li J F, Tan Q, Zhang S, Fan G H, Liu C Y, Miao L, Nan D, Wang T M and Zhao L D 2017 Nano Energy 35 387
|
[30] |
Shannon R D 1976 Acta Crystallogr. A 32 751
|
[31] |
Zhang B, Wang J, Zou T, Zhang S, Yaer X, Ding N, Liu C, Miao L, Li Y and Wu Y 2015 J. Mater. Chem. C 3 11406
|
[32] |
Shingo Ohta H O and Kunihito Koumoto 2006 J. Ceram. Soc. Jpn. 114 102
|
[33] |
Cutler M, Leavy J F and Fitzpatrick R L 1964 Phys. Rev. 133 A1143
|
[34] |
Ohta S, Nomura T, Ohta H, Hirano M, Hosono H and Koumoto K 2005 Appl. Phys. Lett. 87 092108
|
[35] |
Ou C, Hou J, Wei TR, Jiang B, Jiao S, Li J F and Zhu H 2015 NPG Asia Mater. 7 e182
|
[36] |
Shen J, Zhang X, Lin S, Li J, Chen Z, Li W and Pei Y 2016 J. Mater. Chem. A 4 15464
|
[37] |
Li W, Lin S, Zhang X, Chen Z, Xu X and Pei Y 2016 Chem. Mater. 28 6227
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|