1 Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, SAR, Macau, China; 2 College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
Abstract The thermoelectric (TE) materials and corresponding TE devices can achieve direct heat-to-electricity conversion, thus have wide applications in heat energy harvesting (power generator), wearable electronics and local cooling. In recent years, aerogel-based TE materials have received considerable attention and have made remarkable progress because of their unique structural, electrical and thermal properties. In this review, the recent progress in both organic, inorganic, and composite/hybrid TE aerogels is systematically summarized, including the main constituents, preparation method, TE performance, as well as factors affecting the TE performance and the corresponding mechanism. Moreover, two typical aerogel-based TE devices/generators are compared and analyzed in terms of assembly modes and output performance. Finally, the present challenges and some tentative suggestions for future research prospects are provided in conclusion.
(Thermoelectric, electrogasdynamic and other direct energy conversion)
Fund: Project supported by Shenzhen Fundamental Research Program (Grant No. JCYJ20200109105604088) and Distinguished Young Talents in Higher Education of Guangdong, China (Project No. 2020KQNCX061).
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明) Recent advances in organic, inorganic, and hybrid thermoelectric aerogels 2022 Chin. Phys. B 31 027903
[1] Fan Z, Zhang Y, Pan L, Ouyang J and Zhang Q 2021 Renew. Sust. Energ. Rev.137 110448 [2] Liang L, Lv H, Shi X L, Liu Z, Chen G, Chen Z G and Sun G 2021 Mater. Horiz.8 2750 [3] Liu Z and Chen G 2020 Adv. Mater. Technol.5 2000049 [4] Lv H, Liang L, Zhang Y, Deng L, Chen Z, Liu Z, Wang H and Chen G 2021 Nano Energy88 106260 [5] Zhang Y, Zhang Q and Chen G 2020 Carbon Energy2 408 [6] Zheng Y, Zeng H N, Zhu Q and Xu J W 2018 J. Mater. Chem. C6 8858 [7] Yao H, Fan Z, Cheng H, Guan X, Wang C, Sun K and Ouyang J 2018 Macromol. Rapid Commun.39 e1700727 [8] Zhang L, Shi X L, Yang Y L and Chen Z G 2021 Mater. Today46 62 [9] Jiang Q, Sun H, Zhao D, Zhang F, Hu D, Jiao F, Qin L, Linseis V, Fabiano S, Crispin X, Ma Y and Cao Y 2020 Adv. Mater.32 e2002752 [10] Xiong J, Wang L, Xu J, Liu C, Zhou W, Shi H, Jiang Q and Jiang F 2015 J. Mater. Sci. Mater. Electron.27 1769 [11] Hong M, Chen Z G and Zou J 2018 Chin. Phys. B27 048403 [12] Zhai J, Wang T, Wang H, Su W, Wang X, Chen T and Wang C 2018 Chin. Phys. B27 047306 [13] Deng L and Chen G 2021 Nano Energy80 105448 [14] Bharti M, Singh A, Samanta S and Aswal D K 2018 Prog. Mater. Sci.93 270 [15] Wang X, Meng F, Tang H, Gao Z, Li S, Jin S, Jiang Q, Jiang F and Xu J 2018 Synth. Met.235 42 [16] Fan J, Huang X, Liu F, Deng L and Chen G 2021 Compos. Commun.24 100612 [17] Chen X, Shi W and Zhang K 2020 ACS Appl. Mater. Interfaces12 34451 [18] Yang J, Jiang Q, Zhang J, Xu J, Liu J, Liu P, Liu G, Wang Y and Jiang F 2020 Synth. Met.269 116546 [19] Jiang Q, Lan X, Liu C, Shi H, Zhu Z, Zhao F, Xu J and Jiang F 2018 Mater. Chem. Front.2 679 [20] Liang L, Fan J, Wang M, Chen G and Sun G 2020 Compos. Sci. Technol.187 107948 [21] Ni D, Song H, Chen Y and Cai K 2020 J. Materiomics6 364 [22] Deng W, Deng L, Li Z, Zhang Y and Chen G 2021 ACS Appl. Mater. Interfaces13 12131 [23] Yin S, Lu W, Wu R, Fan W, Guo C Y and Chen G 2020 ACS Appl. Mater. Interfaces12 3547 [24] Hu X, Zhang K, Zhang J, Wang S and Qiu Y 2018 ACS Appl. Energy Mater.1 4883 [25] Wang S, Zhou Y, Liu Y, Wang L and Gao C 2020 J. Mater. Chem. C8 528 [26] Liu Y X, Liu H H, Wang J P and Zhang X X 2018 J. Polym. Eng.38 381 [27] Wang Y, Yang J, Wang L, Du K, Yin Q and Yin Q 2017 ACS Appl. Mater. Interfaces9 20124 [28] Ćirić-Marjanović G 2013 Synth. Met.170 31 [29] Guo Y, Dun C, Xu J, Li P, Huang W, Mu J, Hou C, Hewitt C A, Zhang Q, Li Y, Carroll D L and Wang H 2018 ACS Appl. Mater. Interfaces10 33316 [30] Mitra M, Kargupta K, Ganguly S, Goswami S and Banerjee D 2017 Synth. Met.228 25 [31] El-Shamy A G 2019 Compos. B. Eng.174 106993 [32] Li Z, Deng L, Lv H, Liang L, Deng W, Zhang Y and Chen G 2021 Adv. Funct. Mater.31 2104836 [33] Zhang Y, Deng L, Lv H and Chen G 2020 npj Flex. Electron.4 26 [34] Lee J H and Park S J 2020 Carbon163 1 [35] Wang X, Liu P, Jiang Q, Zhou W, Xu J, Liu J, Jia Y, Duan X, Liu Y, Du Y and Jiang F 2019 ACS Appl. Mater. Interfaces11 2408 [36] Zhao X, Wang W, Wang Z, Wang J, Huang T, Dong J and Zhang Q 2020 Chem. Eng. J.395 125115 [37] Jia F, Wu R, Liu C, Lan J, Lin Y H and Yang X 2019 ACS Sustainable Chem. Eng.7 12591 [38] Kim J, Bae E J, Kang Y H, Lee C and Cho S Y 2020 Nano Energy74 104824 [39] Blackburn J L, Ferguson A J, Cho C and Grunlan J C 2018 Adv. Mater.30 1704386 [40] Yang J, Yip H L and Jen A K Y 2013 Adv. Energy Mater.3 549 [41] Wang L, Yao Q, Shi W, Qu S and Chen L 2017 Mater. Chem. Front.1 741 [42] Long Y Z, Li M M, Gu C, Wan M, Duvail J L, Liu Z and Fan Z 2011 Prog. Polym. Sci.36 1415 [43] Zhang Z, Liao M, Lou H, Hu Y, Sun X and Peng H 2018 Adv. Mater.30 e1704261 [44] Gueye M N, Carella A, Faure-Vincent J, Demadrille R and Simonato J P 2020 Prog. Mater Sci.108 100616 [45] Fan Z and Ouyang J Y 2019 Adv. Electron. Mater.5 1800769 [46] Kim G H, Shao L, Zhang K and Pipe K P 2013 Nat. Mater.12 719 [47] Gordon M P, Zaia E W, Zhou P, Russ B, Coates N E, Sahu A and Urban J J 2017 J. Appl. Polym. Sci.134 44070 [48] Yanagishima N, Kanehashi S, Saito H, Ogino K and Shimomura T 2020 Polymer206 122912 [49] Okada N, Sato K, Yokoo M, Kodama E, Kanehashi S and Shimomura T 2020 ACS Appl. Polym. Mater.3 455 [50] Acharyya P, Kundu K and Biswas K 2020 Nanoscale12 21094 [51] Ganguly S, Zhou C, Morelli D, Sakamoto J and Brock S L 2012 J. Phys. Chem. C116 17431 [52] Adekoya G J, Sadiku R E and Ray S S 2021 Macromol. Mater. Eng.306 2000716 [53] Chen J, Gui X, Wang Z, Li Z, Xiang R, Wang K, Wu D, Xia X, Zhou Y, Wang Q, Tang Z and Chen L 2012 ACS Appl. Mater. Interfaces4 81 [54] Zhao L, Sun X, Lei Z, Zhao J, Wu J, Li Q and Zhang A 2015 Compos. B. Eng.83 317 [55] Gupta S and Meek R 2020 Appl. Phys. A126 704 [56] Tan D, Zhao J, Gao C, Wang H, Chen G and Shi D 2017 ACS Appl. Mater. Interfaces9 21820 [57] Lei Z, Yan Y, Feng J, Wu J, Huang G, Li X, Xing W and Zhao L 2015 RSC Adv.5 25650 [58] Sun X, Zhao J, Zhao L, Wu J and Li Q 2016 RSC Adv.6 109878 [59] Wang L, Bi H, Yao Q, Ren D, Qu S, Huang F and Chen L 2017 Compos. Sci. Technol.150 135 [60] Qi X, Miao T, Chi C, Zhang G, Zhang C, Du Y, An M, Ma W G and Zhang X 2020 Nano Energy77 105096 [61] Sun X, Wei Y, Li J, Zhao J, Zhao L and Li Q 2017 Sci. China Mater.60 159 [62] Gnanaseelan M, Chen Y, Luo J, Krause B, Pionteck J, Pötschke P and Qi H 2018 Compos. Sci. Technol.163 133
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.