Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027903    DOI: 10.1088/1674-1056/ac2802
Special Issue: SPECIAL TOPIC — Organic and hybrid thermoelectrics
TOPICAL REVIEW—Organic and hybrid thermoelectrics Prev   Next  

Recent advances in organic, inorganic, and hybrid thermoelectric aerogels

Lirong Liang(梁丽荣)1, Xiaodong Wang(王晓东)2, Zhuoxin Liu(刘卓鑫)2,†, Guoxing Sun(孙国星)1,‡, and Guangming Chen(陈光明)2,§
1 Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, SAR, Macau, China;
2 College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
Abstract  The thermoelectric (TE) materials and corresponding TE devices can achieve direct heat-to-electricity conversion, thus have wide applications in heat energy harvesting (power generator), wearable electronics and local cooling. In recent years, aerogel-based TE materials have received considerable attention and have made remarkable progress because of their unique structural, electrical and thermal properties. In this review, the recent progress in both organic, inorganic, and composite/hybrid TE aerogels is systematically summarized, including the main constituents, preparation method, TE performance, as well as factors affecting the TE performance and the corresponding mechanism. Moreover, two typical aerogel-based TE devices/generators are compared and analyzed in terms of assembly modes and output performance. Finally, the present challenges and some tentative suggestions for future research prospects are provided in conclusion.
Keywords:  thermoelectric materials      thermoelectric device      aerogel      thermoelectric performance  
Received:  28 August 2021      Revised:  12 September 2021      Accepted manuscript online:  18 September 2021
PACS:  79.10.-n (Thermoelectronic phenomena)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
Fund: Project supported by Shenzhen Fundamental Research Program (Grant No. JCYJ20200109105604088) and Distinguished Young Talents in Higher Education of Guangdong, China (Project No. 2020KQNCX061).
Corresponding Authors:  Zhuoxin Liu, Guoxing Sun, Guangming Chen     E-mail:;;

Cite this article: 

Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明) Recent advances in organic, inorganic, and hybrid thermoelectric aerogels 2022 Chin. Phys. B 31 027903

[1] Fan Z, Zhang Y, Pan L, Ouyang J and Zhang Q 2021 Renew. Sust. Energ. Rev. 137 110448
[2] Liang L, Lv H, Shi X L, Liu Z, Chen G, Chen Z G and Sun G 2021 Mater. Horiz. 8 2750
[3] Liu Z and Chen G 2020 Adv. Mater. Technol. 5 2000049
[4] Lv H, Liang L, Zhang Y, Deng L, Chen Z, Liu Z, Wang H and Chen G 2021 Nano Energy 88 106260
[5] Zhang Y, Zhang Q and Chen G 2020 Carbon Energy 2 408
[6] Zheng Y, Zeng H N, Zhu Q and Xu J W 2018 J. Mater. Chem. C 6 8858
[7] Yao H, Fan Z, Cheng H, Guan X, Wang C, Sun K and Ouyang J 2018 Macromol. Rapid Commun. 39 e1700727
[8] Zhang L, Shi X L, Yang Y L and Chen Z G 2021 Mater. Today 46 62
[9] Jiang Q, Sun H, Zhao D, Zhang F, Hu D, Jiao F, Qin L, Linseis V, Fabiano S, Crispin X, Ma Y and Cao Y 2020 Adv. Mater. 32 e2002752
[10] Xiong J, Wang L, Xu J, Liu C, Zhou W, Shi H, Jiang Q and Jiang F 2015 J. Mater. Sci. Mater. Electron. 27 1769
[11] Hong M, Chen Z G and Zou J 2018 Chin. Phys. B 27 048403
[12] Zhai J, Wang T, Wang H, Su W, Wang X, Chen T and Wang C 2018 Chin. Phys. B 27 047306
[13] Deng L and Chen G 2021 Nano Energy 80 105448
[14] Bharti M, Singh A, Samanta S and Aswal D K 2018 Prog. Mater. Sci. 93 270
[15] Wang X, Meng F, Tang H, Gao Z, Li S, Jin S, Jiang Q, Jiang F and Xu J 2018 Synth. Met. 235 42
[16] Fan J, Huang X, Liu F, Deng L and Chen G 2021 Compos. Commun. 24 100612
[17] Chen X, Shi W and Zhang K 2020 ACS Appl. Mater. Interfaces 12 34451
[18] Yang J, Jiang Q, Zhang J, Xu J, Liu J, Liu P, Liu G, Wang Y and Jiang F 2020 Synth. Met. 269 116546
[19] Jiang Q, Lan X, Liu C, Shi H, Zhu Z, Zhao F, Xu J and Jiang F 2018 Mater. Chem. Front. 2 679
[20] Liang L, Fan J, Wang M, Chen G and Sun G 2020 Compos. Sci. Technol. 187 107948
[21] Ni D, Song H, Chen Y and Cai K 2020 J. Materiomics 6 364
[22] Deng W, Deng L, Li Z, Zhang Y and Chen G 2021 ACS Appl. Mater. Interfaces 13 12131
[23] Yin S, Lu W, Wu R, Fan W, Guo C Y and Chen G 2020 ACS Appl. Mater. Interfaces 12 3547
[24] Hu X, Zhang K, Zhang J, Wang S and Qiu Y 2018 ACS Appl. Energy Mater. 1 4883
[25] Wang S, Zhou Y, Liu Y, Wang L and Gao C 2020 J. Mater. Chem. C 8 528
[26] Liu Y X, Liu H H, Wang J P and Zhang X X 2018 J. Polym. Eng. 38 381
[27] Wang Y, Yang J, Wang L, Du K, Yin Q and Yin Q 2017 ACS Appl. Mater. Interfaces 9 20124
[28] Ćirić-Marjanović G 2013 Synth. Met. 170 31
[29] Guo Y, Dun C, Xu J, Li P, Huang W, Mu J, Hou C, Hewitt C A, Zhang Q, Li Y, Carroll D L and Wang H 2018 ACS Appl. Mater. Interfaces 10 33316
[30] Mitra M, Kargupta K, Ganguly S, Goswami S and Banerjee D 2017 Synth. Met. 228 25
[31] El-Shamy A G 2019 Compos. B. Eng. 174 106993
[32] Li Z, Deng L, Lv H, Liang L, Deng W, Zhang Y and Chen G 2021 Adv. Funct. Mater. 31 2104836
[33] Zhang Y, Deng L, Lv H and Chen G 2020 npj Flex. Electron. 4 26
[34] Lee J H and Park S J 2020 Carbon 163 1
[35] Wang X, Liu P, Jiang Q, Zhou W, Xu J, Liu J, Jia Y, Duan X, Liu Y, Du Y and Jiang F 2019 ACS Appl. Mater. Interfaces 11 2408
[36] Zhao X, Wang W, Wang Z, Wang J, Huang T, Dong J and Zhang Q 2020 Chem. Eng. J. 395 125115
[37] Jia F, Wu R, Liu C, Lan J, Lin Y H and Yang X 2019 ACS Sustainable Chem. Eng. 7 12591
[38] Kim J, Bae E J, Kang Y H, Lee C and Cho S Y 2020 Nano Energy 74 104824
[39] Blackburn J L, Ferguson A J, Cho C and Grunlan J C 2018 Adv. Mater. 30 1704386
[40] Yang J, Yip H L and Jen A K Y 2013 Adv. Energy Mater. 3 549
[41] Wang L, Yao Q, Shi W, Qu S and Chen L 2017 Mater. Chem. Front. 1 741
[42] Long Y Z, Li M M, Gu C, Wan M, Duvail J L, Liu Z and Fan Z 2011 Prog. Polym. Sci. 36 1415
[43] Zhang Z, Liao M, Lou H, Hu Y, Sun X and Peng H 2018 Adv. Mater. 30 e1704261
[44] Gueye M N, Carella A, Faure-Vincent J, Demadrille R and Simonato J P 2020 Prog. Mater Sci. 108 100616
[45] Fan Z and Ouyang J Y 2019 Adv. Electron. Mater. 5 1800769
[46] Kim G H, Shao L, Zhang K and Pipe K P 2013 Nat. Mater. 12 719
[47] Gordon M P, Zaia E W, Zhou P, Russ B, Coates N E, Sahu A and Urban J J 2017 J. Appl. Polym. Sci. 134 44070
[48] Yanagishima N, Kanehashi S, Saito H, Ogino K and Shimomura T 2020 Polymer 206 122912
[49] Okada N, Sato K, Yokoo M, Kodama E, Kanehashi S and Shimomura T 2020 ACS Appl. Polym. Mater. 3 455
[50] Acharyya P, Kundu K and Biswas K 2020 Nanoscale 12 21094
[51] Ganguly S, Zhou C, Morelli D, Sakamoto J and Brock S L 2012 J. Phys. Chem. C 116 17431
[52] Adekoya G J, Sadiku R E and Ray S S 2021 Macromol. Mater. Eng. 306 2000716
[53] Chen J, Gui X, Wang Z, Li Z, Xiang R, Wang K, Wu D, Xia X, Zhou Y, Wang Q, Tang Z and Chen L 2012 ACS Appl. Mater. Interfaces 4 81
[54] Zhao L, Sun X, Lei Z, Zhao J, Wu J, Li Q and Zhang A 2015 Compos. B. Eng. 83 317
[55] Gupta S and Meek R 2020 Appl. Phys. A 126 704
[56] Tan D, Zhao J, Gao C, Wang H, Chen G and Shi D 2017 ACS Appl. Mater. Interfaces 9 21820
[57] Lei Z, Yan Y, Feng J, Wu J, Huang G, Li X, Xing W and Zhao L 2015 RSC Adv. 5 25650
[58] Sun X, Zhao J, Zhao L, Wu J and Li Q 2016 RSC Adv. 6 109878
[59] Wang L, Bi H, Yao Q, Ren D, Qu S, Huang F and Chen L 2017 Compos. Sci. Technol. 150 135
[60] Qi X, Miao T, Chi C, Zhang G, Zhang C, Du Y, An M, Ma W G and Zhang X 2020 Nano Energy 77 105096
[61] Sun X, Wei Y, Li J, Zhao J, Zhao L and Li Q 2017 Sci. China Mater. 60 159
[62] Gnanaseelan M, Chen Y, Luo J, Krause B, Pionteck J, Pötschke P and Qi H 2018 Compos. Sci. Technol. 163 133
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[3] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[4] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[5] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[6] Enhanced thermoelectric performance of PEDOT: PSS films via ionic liquid post-treatment
Jiaji Yang(杨家霁), Xuejing Li(李雪晶), Yanhua Jia(贾艳华), Jiang Zhang(张弜), and Qinglin Jiang(蒋庆林). Chin. Phys. B, 2022, 31(2): 027302.
[7] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[8] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[9] Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping
Zhiyu Chen(陈志禹), Ruifeng Wang(王瑞峰), Guoyu Wang(王国玉), Xiaoyuan Zhou(周小元), Zhengshang Wang(王正上), Cong Yin(尹聪), Qing Hu(胡庆), Binqiang Zhou(周斌强), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047202.
[10] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[11] Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics
Da-Quan Liu(刘达权), Yu-Wei Zhang(张玉伟), Hui-Jun Kang(康慧君), Jin-Ling Li(李金玲), Xiong Yang(杨雄), Tong-Min Wang(王同敏). Chin. Phys. B, 2018, 27(4): 047205.
[12] Nanoscale thermal transport: Theoretical method and application
Yu-Jia Zeng(曾育佳), Yue-Yang Liu(刘岳阳), Wu-Xing Zhou(周五星), Ke-Qiu Chen(陈克求). Chin. Phys. B, 2018, 27(3): 036304.
[13] Thermal stability and electrical transport properties of Ge/Sn-codoped single crystalline β-Zn4Sb3 prepared by the Sn-flux method
Hong-xia Liu(刘虹霞), Shu-ping Deng(邓书平), De-cong Li(李德聪), Lan-xian Shen(申兰先), Shu-kang Deng(邓书康). Chin. Phys. B, 2017, 26(2): 027401.
[14] Performance of thermoelectric generator with graphene nanofluid cooling
Jiao-jiao Xing(邢姣娇), Zi-hua Wu(吴子华), Hua-qing Xie(谢华清), Yuan-yuan Wang(王元元), Yi-huai Li(李奕怀), Jian-hui Mao(毛建辉). Chin. Phys. B, 2017, 26(10): 104401.
[15] Improved thermoelectric performance in p-type Bi0.48Sb1.52Te3 bulk material by adding MnSb2Se4
Binglei Cao(曹丙垒), Jikang Jian(简基康), Binghui Ge(葛炳辉), Shanming Li(李善明), Hao Wang(王浩), Jiao Liu(刘骄), Huaizhou Zhao(赵怀周). Chin. Phys. B, 2017, 26(1): 017202.
No Suggested Reading articles found!