Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017401    DOI: 10.1088/1674-1056/28/1/017401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Synthesis, physical properties, and annealing investigation of new layered Bi-chalcogenide LaOBiHgS3

Yi Yu(于一)1, Chunchang Wang(汪春昌)1, Liang Li(李亮)2, Qiuju Li(李秋菊)1, Chao Cheng(程超)2, Shuting Wang(王舒婷)1, Changjin Zhang(张昌锦)3
1 School of Physics and Material Science, Anhui University, Hefei 230601, China;
2 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
3 High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei 230026, China
Abstract  

The transport and thermoelectric properties together with annealing of the new layered Bi-chalcogenide LaOBiHgS3 are studied. On the transport part, the insulating behavior of the as-grown sample is evidently depressed by post annealing. A hump-like abnormality appears around 170 K. The thermoelectric performance of the sample is observably improved by the annealing, mainly because of the enhanced electrical conductance. The present results suggest that the physical properties of LaOBiHgS3 are sensitive to post annealing and the possible micro adjustments that follow, indicating the layered Bi-chalcogenide family to be an ideal platform for designing novel functional materials.

Keywords:  thermoelectric material      Bi-chalcogenide      post annealing  
Received:  09 September 2018      Revised:  15 October 2018      Accepted manuscript online: 
PACS:  74.25.F- (Transport properties)  
  74.62.En (Effects of disorder)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.70.Xa (Pnictides and chalcogenides)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51572001, 11404002, and 11404003) and the ‘211 Project’ of Anhui University, China (Grant No. J01001319J10113190007).

Corresponding Authors:  Yi Yu     E-mail:  onlyyuyi@mail.ustc.edu.cn

Cite this article: 

Yi Yu(于一), Chunchang Wang(汪春昌), Liang Li(李亮), Qiuju Li(李秋菊), Chao Cheng(程超), Shuting Wang(王舒婷), Changjin Zhang(张昌锦) Synthesis, physical properties, and annealing investigation of new layered Bi-chalcogenide LaOBiHgS3 2019 Chin. Phys. B 28 017401

[1] Sun Y L, Ablimit A, Zhai H F, Bao J K, Tang Z T, Wang X B, Wang N L, Feng C M and Cao G H 2014 Inorg. Chem. 53 11125
[2] Omachi A, Kajitani J, Hiroi T, Miura O and Mizuguchi Y 2014 J. Appl. Phys. 115 083909
[3] Mizuguchi Y, Omachi A, Goto Y, Kamihara Y, Matoba M, Hiroi T, Kajitani J and Miura O 2014 J. Appl. Phys 116 163915
[4] Nishida A, Nishiate H, Lee C H, Miura O and Mizuguchi Y 2016 J. Phys. Soc. Jpn. 85 074702
[5] Nishida A, Miura O, Lee C H and Mizuguchi Y 2015 Appl. Phys. Express 8 111801
[6] Mizuguchi Y 2015 J. Phys. Chem. Solids 84 34
[7] Bulusua A and Walker D G 2008 Superlattices Microst. 44 1
[8] Yu Y, Wang C C, Li Q J, Cheng C, Wang S T and Zhang C J 2018 Ceram. Int. 45 817
[9] Mizuguchi Y, Miura A, Kajitani J, Hiroi T, Miura O, Tadanaga K, Kumada N, Magome E, Moriyoshi C and Kuroiwa Y 2015 Sci. Rep. 5 14968
[10] Mizuguchi Y, Hijikata Y, Abe T, Moriyoshi C, Kuroiwa Y, Goto Y, Miura O, Lee S, Torii S, Kamiyama T, Lee C H, Ochi M and Kuroki K 2017 Europhys. Lett. 119 26002
[11] Chung D Y, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C, Bastea M, Uher C and Kanatzidis M G 2000 Science 287 1024
[12] Yu Y, Zhang C J, Tong W, Zhang L, Tan D, Pi L, Yang Z R, Tian M L, Tan S and Zhang Y H 2012 New J. Phys. 14 023032
[13] Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J and Yuan H Q 2011 Europhys. Lett. 94 27009
[14] Yan X W, Gao M, Lu Z Y and Xiang T 2011 Phys. Rev. Lett. 106 087005
[15] Mizuguchi Y, Nishida A, Omachi A and Miura O 2016 Cogent Physics 3 1156281
[16] Mizuguchi Y, Deguchi K, Kawasaki Y, Ozaki T, Nagao M, Tsuda S, Yamaguchi T and Takano Y 2011 J. Appl. Phys. 109 013914
[17] Noji T, Suzuki T, Abe H, Adachi T, Kato M and Koike Y 2010 J. Phys. Soc. Jpn. 79 084711
[18] Yu Y, Shao J F, Tan S, Zhang C J and Zhang Y H 2013 J. Phys. Soc. Jpn. 82 034718
[19] Taen T, Tsuchiya Y, Nakajima Y and Tamegai T 2009 Phys. Rev. B 80 092502
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[4] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[5] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[6] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[7] Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene)
Meng Li(李萌), Zuzhi Bai(柏祖志), Xiao Chen(陈晓), Cong-Cong Liu(刘聪聪), Jing-Kun Xu(徐景坤), Xiao-Qi Lan(蓝小琪), and Feng-Xing Jiang(蒋丰兴). Chin. Phys. B, 2022, 31(2): 027201.
[8] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[9] Thermal stability and thermoelectric properties of Cd-doped nano-layered Cu2Se prepared using NaCl flux method
Jianhua Lu(陆建华), Decong Li(李德聪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Jiali Chen(陈家莉), Wen Ge(葛文), and Shukang Deng(邓书康). Chin. Phys. B, 2020, 29(12): 127403.
[10] Grain size and structure distortion characterization of α-MgAgSb thermoelectric material by powder diffraction
Xiyang Li(李西阳), Zhigang Zhang(张志刚), Lunhua He(何伦华), Maxim Avdeev, Yang Ren(任洋), Huaizhou Zhao(赵怀周), and Fangwei Wang(王芳卫)†. Chin. Phys. B, 2020, 29(10): 106101.
[11] Improving compatibility between thermoelectric components through current refraction
K Song(宋坤), H P Song(宋豪鹏), C F Gao(高存法). Chin. Phys. B, 2018, 27(7): 077304.
[12] Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics
Da-Quan Liu(刘达权), Yu-Wei Zhang(张玉伟), Hui-Jun Kang(康慧君), Jin-Ling Li(李金玲), Xiong Yang(杨雄), Tong-Min Wang(王同敏). Chin. Phys. B, 2018, 27(4): 047205.
[13] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[14] Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping
Zhiyu Chen(陈志禹), Ruifeng Wang(王瑞峰), Guoyu Wang(王国玉), Xiaoyuan Zhou(周小元), Zhengshang Wang(王正上), Cong Yin(尹聪), Qing Hu(胡庆), Binqiang Zhou(周斌强), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047202.
[15] Nanoscale thermal transport: Theoretical method and application
Yu-Jia Zeng(曾育佳), Yue-Yang Liu(刘岳阳), Wu-Xing Zhou(周五星), Ke-Qiu Chen(陈克求). Chin. Phys. B, 2018, 27(3): 036304.
No Suggested Reading articles found!