Special Issue:
SPECIAL TOPIC — Recent advances in thermoelectric materials and devices
|
SPECIAL TOPIC—Recent advances in thermoelectric materials and devices |
Prev
Next
|
|
|
Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics |
Da-Quan Liu(刘达权), Yu-Wei Zhang(张玉伟), Hui-Jun Kang(康慧君), Jin-Ling Li(李金玲), Xiong Yang(杨雄), Tong-Min Wang(王同敏) |
Key Laboratory of Solidification Control and Digital Preparation Technology(Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract Nb-doped SrTiO3 thermoelectric ceramics with different niobium concentrations, sintering temperatures and Sr-site vacancies are successfully prepared by high energy ball milling combined with carbon burial sintering. For fully understanding the effect of niobium doping on SrTiO3, thermoelectric transport properties are systematically investigated in a temperature range from 300 K to 1100 K. The carrier mobility can be significantly enhanced, and the electrical conductivity is quadrupled, when the sintering temperature rises from 1673 K to 1773 K (beyond the eutectic temperature (1713 K) of SrTiO3-TiO2). The lattice vibration can be suppressed by the lattice distortion introduced by the doped niobium atoms. However, Sr-site vacancies compensate for the lattice distortion and increase the lattice thermal conductivity more or less. Finally, we achieve a maximum value of figure-of-merit zT of 0.21 at 1100 K for SrTi0.9Nb0.1O3 ceramic sintered at 1773 K.
|
Received: 08 January 2018
Revised: 24 February 2018
Accepted manuscript online:
|
PACS:
|
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
72.80.Ga
|
(Transition-metal compounds)
|
|
73.50.Lw
|
(Thermoelectric effects)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403803), the National Natural Science Foundation of China (Grant Nos. 51774065, 51525401, 51690163, and 51601028), and the Dalian Support Plan for Innovation of High-level Talents (Top and Leading Talents) (Grant No. 2015R013). |
Corresponding Authors:
Hui-Jun Kang
E-mail: kanghuijun@dlut.edu.cn
|
Cite this article:
Da-Quan Liu(刘达权), Yu-Wei Zhang(张玉伟), Hui-Jun Kang(康慧君), Jin-Ling Li(李金玲), Xiong Yang(杨雄), Tong-Min Wang(王同敏) Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics 2018 Chin. Phys. B 27 047205
|
[1] |
He J and Tritt T M 2017 Science 357 1369
|
[2] |
Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
|
[3] |
Koumoto K, Wang Y, Zhang R, Kosuga A and Funahashi R 2010 Ann. Rev. Mater. Res. 40 363
|
[4] |
Wang J, Ye X X, Yaer X B, Zhang B Y, Ma W and Miao L 2015 Scr. Mater. 99 25
|
[5] |
Wang Y F, Zhang X Y, Shen L M, Bao N Z, Wan C L, Park N H, Koumoto K and Gupta A 2013 J. Power Sources 241 255
|
[6] |
Sootsman J R, Chung D Y and Kanatzidis M G 2009 Angew. Chem. Int. Edit. 48 8616
|
[7] |
Liu Y, Cadavid D, Ibáñez M, Ortega S, Martí-Sánchez S, Dobrozhan O, Kovalenko M V, Arbiol J and Cabot A 2016 APL Mater. 4 104813
|
[8] |
Cui Y J, Salvador J R, Yang J H, Wang H, Amow G and Kleinke H 2009 J. Electron. Mater. 38 1002
|
[9] |
Zhang Y C, Liu J, Li Y, Chen Y F, Li J C, Su W B, Zhou Y C, Zhai J Z, Wang T and Wang C L 2017 Chin. Phys. B 26 107201
|
[10] |
Koumoto K, Terasaki I and Funahashi R 2006 Mrs. Bull. 31 206
|
[11] |
Fergus J W 2012 J. Eur. Ceram. Soc. 32 525
|
[12] |
Zhang B Y, Wang J, Zou T, Zhang S, Yaer X B, Ding N, Liu C Y, Miao L, Lia Y and Wua Y 2015 J. Mater. Chem. C 3 11406
|
[13] |
Ohta S, Nomura T, Ohta H, Hirano M, Hosono H and Koumoto K 2005 Appl. Phys. Lett. 87 092108
|
[14] |
Kovalevsky A V, Aguirre M H, Populoh S, Patricio S G, Ferreira N M, Mikhalev S M, Fagg D P, Weidenkaff A and Frade J R 2017 J. Mater. Chem. A 5 3909
|
[15] |
Li L L, Qin X Y, Liu Y F and Liu Q Z 2015 Chin. Phys. B 24 067202
|
[16] |
Cocco A and Massazza F 1963 Ann. Chim-rome. 53 883
|
[17] |
Il Kim S, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H, Snyder G J and Kim S W 2015 Science 348 109
|
[18] |
Han J, Sun Q and Song Y 2017 J. Alloys Compd. 705 22
|
[19] |
Liu J, Wang C L, Su W B, Wang H C, Zheng P, Li J C, Zhang J L and Mei L M 2009 Appl. Phys. Lett. 95 162110
|
[20] |
Liu D Q, Zhang Y W, Kang H J, Li J L, Chen Z N and Wang T M 2018 J. Eur. Ceram. Soc. 38 807
|
[21] |
Park K, Son J S, Woo S I, Shin K, Oh M W, Park S D and Hyeon T 2014 J. Mater. Chem. A 2 4217
|
[22] |
Srivastava D, Norman C, Azough F, Schafer M C, Guilmeau E, Kepaptsoglou D, Ramasse Q M, Nicotra G and Freer R 2016 Phys. Chem. Chem. Phys. 18 26475
|
[23] |
Werfel F and Brümmer O 1983 Phys. Scr. 28 92
|
[24] |
Hu Y, Tan O K, Pan J S and Yao X 2004 J. Phys. Chem. B 108 11214
|
[25] |
Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
|
[26] |
Pei Y Z, Heinz N A and Snyder G J 2011 J. Mater. Chem. 21 18256
|
[27] |
Wunderlich W, Ohta H and Koumoto K 2009 Physica B 404 2202
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|