Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 077304    DOI: 10.1088/1674-1056/27/7/077304

Improving compatibility between thermoelectric components through current refraction

K Song(宋坤), H P Song(宋豪鹏), C F Gao(高存法)
State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
Abstract  It is well known that components with dissimilar compatibility factors cannot be combined by segmentation into an efficient thermoelectric generator, since each component needs a unique optimal current density. Based on the complex variable method, the thermal-electric field within a bi-layered thermoelectric composite has been analyzed, and the field distributions have been obtained in closed-form. Our analysis shows that current refraction occurs at the interface, both the refraction angle and current density vary with the incidence angle. Further analysis proves that the current densities in two components can be adjusted independently by adjusting the incidence current density and incidence angle, thus the optimal current density can be matched in both components, and the conversion efficiency can be significantly increased. These results point to a new route for high efficiency thermoelectric composites.
Keywords:  thermoelectric material      current refraction      compatibility factor      conversion efficiency  
Received:  10 January 2018      Revised:  11 April 2018      Accepted manuscript online: 
PACS:  73.50.Lw (Thermoelectric effects)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  84.60.Bk (Performance characteristics of energy conversion systems; figure of merit)  
  46.25.Cc (Theoretical studies)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. NS2016008).
Corresponding Authors:  H P Song     E-mail:

Cite this article: 

K Song(宋坤), H P Song(宋豪鹏), C F Gao(高存法) Improving compatibility between thermoelectric components through current refraction 2018 Chin. Phys. B 27 077304

[1] Luan Y Q, Yang W, Xiao P, Ma Z F and Wang H P 2014 Applied Mechanics and Materials 716 1457
[2] De Backer J, Bolmsjö G and Christiansson A K 2014 The International Journal of Advanced Manufacturing Technology 70 375
[3] He W, Wang S, Li Y and Zhao Y 2016 Energy Conversion and Management 129 240
[4] Kristiansen N R and and Nielsen H K 2010 Journal of electronic materials 39 1746
[5] Liu L, Lu X S, Shi M L, Ma Y K and Shi J Y 2016 Solar Energy 132 386
[6] Zheng X F, Yan Y Y and Simpson K A 2013 Applied Thermal Engineering 53 305
[7] Bhandari C M and Rowe D M 1980 Contemporary Physics 21 219
[8] Sharma S, Dwivedi V K and Pandit S N 2014 International Journal of Green Energy 11 899
[9] Tiwari P, Gupta N and Gupta K M 2013 Advanced Materials Research 685 161
[10] Harman T C and Honig J M 1967 Thermoelectric and Thermomagnetic Effects and Applications (New York:McGraw-Hill)
[11] Pei J, Zhang B P, Li J F and Liang D D 2017 J. Alloys Compd. 728 694
[12] Zhang K, Zhang Q, Wang L, Jiang W and Chen L D 2017 J. Alloys Compd. 725 563
[13] Zhang Y X, Ge Z H and Feng J 2017 J. Alloys Compd. 727 1076
[14] Hochbaum A I, Chen R K, Delgado R D, Liang W J, Garnett E C, Najarian M, Majumdar A and Yang P D 2008 Nature 451 163
[15] Chen J, Zhang G and Li B W 2010 Nano Lett. 10 3978
[16] Chen J, Zhang G and Li B W 2012 Nano Lett. 12 2826
[17] Mahan G D and Lyon Jr H B 1994 J. Appl. Phys. 76 1899
[18] Yan H and Toshima N 1999 Chemistry Letters 28 1217
[19] Antonik M, O'Connor B T and Ferguson S 2016 Journal of Thermal Science and Engineering Applications 8 021022
[20] Rao A M, Ji X and Tritt T M 2006 MRS Bulletin 31 218
[21] Snyder G J and Ursell T S 2003 Physical review letters 91 148301
[22] Song K, Song H P and Gao C F 2018 J. Appl. Phys. 123 124105
[23] Mahan G D 2013 Phys. Rev. B 87 045415
[24] Yang Y, Xie S H, Ma F Y and Li J Y 2012 J. Appl. Phys. 111 013510
[25] Yang Y, Ma F Y, Lei C H, Liu Y Y and Li J Y 2013 Appl. Phys. Lett. 102 053905
[26] Song K, Song H P and Gao C F 2017 Chin. Phys. B 26 127307
[27] Callen H B 1960 Thermodynamics:An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics (New York:Wiley)
[28] Milton G W 2002 The Theory of Composites (Cambridge:Cambridge University Press)
[29] Ahmad K, Wan C and Al-Eshaikh M A 2017 J. Electron. Mater. 46 1348
[30] Antonova E E and Looman D C 2005 ICT 2005. 24th International Conference on IEEE, June 19-23, 2005, Clemson, USA, p. 215
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[4] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[5] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[6] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[7] Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene)
Meng Li(李萌), Zuzhi Bai(柏祖志), Xiao Chen(陈晓), Cong-Cong Liu(刘聪聪), Jing-Kun Xu(徐景坤), Xiao-Qi Lan(蓝小琪), and Feng-Xing Jiang(蒋丰兴). Chin. Phys. B, 2022, 31(2): 027201.
[8] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[9] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[10] High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces
Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳). Chin. Phys. B, 2021, 30(5): 058103.
[11] Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field
Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(11): 117103.
[12] Inhibiting radiative recombination rate to enhance quantum yields in a quantum photocell
Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2020, 29(6): 064207.
[13] Thermal stability and thermoelectric properties of Cd-doped nano-layered Cu2Se prepared using NaCl flux method
Jianhua Lu(陆建华), Decong Li(李德聪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Jiali Chen(陈家莉), Wen Ge(葛文), and Shukang Deng(邓书康). Chin. Phys. B, 2020, 29(12): 127403.
[14] Grain size and structure distortion characterization of α-MgAgSb thermoelectric material by powder diffraction
Xiyang Li(李西阳), Zhigang Zhang(张志刚), Lunhua He(何伦华), Maxim Avdeev, Yang Ren(任洋), Huaizhou Zhao(赵怀周), and Fangwei Wang(王芳卫)†. Chin. Phys. B, 2020, 29(10): 106101.
[15] Synthesis, physical properties, and annealing investigation of new layered Bi-chalcogenide LaOBiHgS3
Yi Yu(于一), Chunchang Wang(汪春昌), Liang Li(李亮), Qiuju Li(李秋菊), Chao Cheng(程超), Shuting Wang(王舒婷), Changjin Zhang(张昌锦). Chin. Phys. B, 2019, 28(1): 017401.
No Suggested Reading articles found!