Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 107502    DOI: 10.1088/1674-1056/aba9be
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite

Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡
1 State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Abstract  

Nowadays, magnetic cooling (MC) technology by using the magnetocaloric effect (MCE) has attracted extensive research interest for its promising practical applications. A constant large/giant MCE covers wide refrigeration temperatures (denote as table-like shape) is beneficial for obtaining high efficiency performance for MC. In this paper, the HoNi/HoNi2 composite was successfully synthesized by arc-melting method and proved to be composed of HoNi and HoNi2 crystalline phases with weight ratios of 52.4 wt.% and 47.6 wt.%, respectively. The maximum magnetic entropy change ($ -{\rm{\Delta }}{S}_{M}^{{\rm{\max }}} $ ) is 18.23 J/(kg⋅K), and the refrigerant capacity values RC1, RC2, and RC3 are 867.9 J/kg, 676.4 J/kg, and 467.8 J/kg with ΔH = 0–70 kOe, respectively. The table-like shape MCE and large refrigerant capacity values make the composite attractive for cryogenic MC using the Ericsson cycle.

Keywords:  HoNi-HoNi2 composite      magnetic refrigeration      table-like magnetocaloric effect  
Received:  12 June 2020      Revised:  11 July 2020      Accepted manuscript online:  28 July 2020
PACS:  71.20.Eh (Rare earth metals and alloys)  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
Corresponding Authors:  Corresponding author. E-mail: ykzhang@shu.edu.cn Corresponding author. E-mail: zmren@shu.edu.cn   
About author: 
†Corresponding author. E-mail: ykzhang@shu.edu.cn
‡Corresponding author. E-mail: zmren@shu.edu.cn
* Project supported by the National Natural Science Foundation of China (Grant No. 51690162), Science and Technology Committee of Shanghai, China (Grant No. 19ZR1418300), Independent Research and Development Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University (Grant No. SKLASS 2019-Z003), and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 19DZ2270200).

Cite this article: 

Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡ Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite 2020 Chin. Phys. B 29 107502

Fig. 1.  

The XRD pattern of HoNi/HoNi2 composite along with Rietveld refinement using FULLPROF program. Inset shows the BSE image of HoNi/HoNi2 composite.

Fig. 2.  

The T dependence of M (left-scale) and 1/χ (H/M, right-scale) at H = 10 kOe for HoNi/HoNi2 composite. The inset illustrates MT curves measured at H = 2 kOe in ZFC and FC modes as well as d M/d TT curve for HoNi/HoNi2 composite.

Fig. 3.  

(a) The MH curves under H up to 70 kOe for HoNi/HoNi2 composite. (b) The corresponding Arrott-plots (M2 vs. H/M).

Fig. 4.  

The –ΔSMT curves at different ΔH for HoNi/HoNi2 composite compound. Inset illustrates the RC1, RC2, and RC3 values at different ΔH for HoNi/HoNi2 composite.

Materials TM/K $ -{\rm{\Delta }}{S}_{M}^{\max } $ /J⋅kg−1⋅K−1 RC1/J⋅kg−1 Ref.
HoNi/HoNi2 13/16/38.5 14.93 623.5 this work
HoNi 13.5/35.5 16.6 ∼691 [26]
ErGa 15/30 21.3 ∼658 [17]
0.4(DyNi2) + 0.6(TbNi2) 21.5/37 12.9 526 [18]
HoPdIn 6/23 14.6 496 [20]
ErZn2/ErZn 9/20 19.5 447 [23]
GdCo2B2C 17.2 10.34 238.1 [30]
Ho3Pd2 9.6 18.6 230 [31]
Gd2NiSi3 16 13 233 [32]
Tm2Cu2In 39.4 14.4 331 [33]
Ho2Co2Ga 38.5 11.7 271 [34]
Dy11Co4In9 37 3.53 128.4 [35]
Table 1.  

The TM, $ -{\rm{\Delta }}{S}_{M}^{\max } $ , and RC1 for HoNi/HoNi2 composite and recently reported table-like MCE materials, as well as some other MR materials under the field change of 0–50 kOe.

[1]
Franco V, Blázquaz J S, Ipus J J, Law J Y, Moreno-Ramíreza L M, Conde A 2018 Prog. Mater. Sci. 93 112 DOI: 10.1016/j.pmatsci.2017.10.005
[2]
Li L W, Yan M 2020 J. Alloys Compd. 823 153810 DOI: 10.1016/j.jallcom.2020.153810
[3]
Zhang Y K 2019 J. Alloys Compd. 787 1173 DOI: 10.1016/j.jallcom.2019.02.175
[4]
Zhang Y K, Guo D, Wu B B, Wang H F, Guan R G, Ren Z M 2020 J. Appl. Phys. 127 033905 DOI: 10.1063/1.5140765
[5]
Zhang B, Zheng X Q, Zhao T Y, Hu F X, Sun J R, Shen B G 2018 Chin. Phys. B 27 067503 DOI: 10.1088/1674-1056/27/6/067503
[6]
Tang B Z, Liu X P, Li D M, Yu P, Xia L 2020 Chin. Phys. B 29 056401 DOI: 10.1088/1674-1056/ab7da8
[7]
Pecharsky V K, Gschneidner K A Jr 1997 Phys. Rev. Lett. 78 4494 DOI: 10.1103/PhysRevLett.78.4494
[8]
Liu J, Gottschal T, Skokov K, Moore J, Gutfleisich O 2012 Nat. Mater. 11 620 DOI: 10.1038/nmat3334
[9]
Jiang W H, Mo Z J, Luo J W, Zheng Z X, Lu Q J, Liu G D, Shen J, Li L 2020 Chin. Phys. B 29 037502 DOI: 10.1088/1674-1056/ab69e7
[10]
Tegus O, Brück E, Buschow K H J, de F R 2002 Nature 415 150 DOI: 10.1038/415150a
[11]
Wu X F, Guo C P, Cheng G, Li C R, Wang J, Du Y S, Rao G H, Du Z M 2019 Chin. Phys. B 28 057502 DOI: 10.1088/1674-1056/28/5/057502
[12]
Li L W 2016 Chin. Phys. B 25 037502 DOI: 10.1088/1674-1056/25/3/037502
[13]
Li L W, Xu P, Ye S K, Li Y, Liu G D, Huo D X, Yan M 2020 Acta Mater. 194 354 DOI: 10.1016/j.actamat.2020.05.036
[14]
Ghosh S, Sen P, Mandal K 2020 J. Magn. Magn. Mater. 500 166345 DOI: 10.1016/j.jmmm.2019.166345
[15]
Yang L, Liu J, Zhou Z N, Zhang R Y, Tu D F, Hu Q D, Dong H B, Li J G 2020 J. Alloys Compd. 817 152694 DOI: 10.1016/j.jallcom.2019.152694
[16]
Miao X F, Wang W Y, Liang H X, Qian F J, Cong M Q, Zhang Y J, Muhammad A, Tian Z J, Xu F 2020 J. Mater. Sci. 55 6660 DOI: 10.1007/s10853-020-04488-8
[17]
Zheng X Q, Chen J, Wang L C, Wu R R, Hu F X, Sun J R, Shen B G 2014 J. Appl. Phys. 115 17A905 DOI: 10.1063/1.4854875
[18]
Ibarra-Gaytán P J, Sánchez Llamazares J L, Álvarez-Alonso P, Sánchez-Valdés C F, Gorria P, Blanco J A 2015 J. Appl. Phys. 117 17C116 DOI: 10.1063/1.4915480
[19]
Li L W, Niehaus O, Kersting M, Pöttgen R 2014 Appl. Phys. Lett. 104 092416 DOI: 10.1063/1.4867882
[20]
Li L W, Namiki T, Huo D X, Qian Z H, Nishimura K 2013 Appl. Phys. Lett. 103 222405 DOI: 10.1063/1.4834815
[21]
Chaturvedi A, Stefanoski S, Phan M H, Nolas G S, Srikanth H 2011 Appl. Phys. Lett. 99 162513 DOI: 10.1063/1.3654157
[22]
Álvarez P, Sánchez Llamazares J L, Gorria P, Blanco J 2011 Appl. Phys. Lett. 99 232501 DOI: 10.1063/1.3665941
[23]
Li L W, Yuan Y, Qi Y, Wang Q, Zhou S Q 2018 Mater. Res. Lett. 6 67 DOI: 10.1080/21663831.2017.1393778
[24]
Zhou H Y, Ou X L 1991 J. Alloys Compd. 177 101 DOI: 10.1016/0925-8388(91)90060-9
[25]
Ćwik J, Koshkid’ko Y, Nenkov K, Tereshina E A, Rogacki K 2018 J. Alloys Compd. 735 1088 DOI: 10.1016/j.jallcom.2017.11.194
[26]
Zheng X Q, Zhang B, Wu H, Hu F X, Huang Q Z, Shen B G 2016 J. Appl. Phys. 120 163907 DOI: 10.1063/1.4966655
[27]
Rajivgandhi R, Arout Chelvane J, Quezado S, Malik S K, Nirmala R 2017 J. Magn. Magn. Mater. 433 169 DOI: 10.1016/j.jmmm.2017.03.011
[28]
Legvold S 1980 Handbook of Ferromagnetic Materials Amsterdam North-Holland Publishing Company 183 DOI: 10.1016/S1574-9304(05)80118-x
[29]
Banerjee B K 1964 Phys. Lett. 12 16 DOI: 10.1016/0031-9163(64)91158-8
[30]
Zhang Y K, Guo D, Wu B B, Wang H F, Guan R G, Li X, Ren Z M 2020 J. Alloys Compd. 817 152780 DOI: 10.1016/j.jallcom.2019.152780
[31]
Kadim G, Masrour R, Jabar A 2020 J. Magn. Magn. Mater. 499 166263 DOI: 10.1016/j.jmmm.2019.166263
[32]
Pakhira S, Mazumdar C, Ranganathan R, Giri S, Avdeev M 2016 Phys. Rev. B 94 104414 DOI: 10.1103/PhysRevB.94.104414
[33]
Zhang Y K, Yang Y, Xu X, Hou L, Ren Z M, Li X, Wilde G 2016 J. Phys. D: Appl. Phys. 49 145002 DOI: 10.1088/0022-3727/49/14/145002
[34]
Zhang Y K, Guo D, Geng S H, Lu X G, Wilde G 2018 J. Appl. Phys. 124 043903 DOI: 10.1063/1.5044578
[35]
Zhang Z Q, Wang P Y, Wang N, Wang X J, Xu P, Li L W 2020 Dalton Trans. 49 8764 DOI: 10.1039/D0DT01212B
[1] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[2] Comprehensive performance of a ball-milled La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al magnetocaloric composite
Jiao-Hong Huang(黄焦宏), Ying-De Zhang(张英德), Nai-Kun Sun(孙乃坤), Yang Zhang(张扬), Xin-Guo Zhao(赵新国), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2022, 31(4): 047503.
[3] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[4] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[5] Machine learning technique for prediction of magnetocaloric effect in La(Fe, Si/Al)13-based materials
Bo Zhang(张博), Xin-Qi Zheng(郑新奇), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(6): 067503.
[6] Effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La1-xPrxFe11.4Si1.6Hy hydrides
Lei Xu(许磊), Jin-Liang Zhao(赵金良), Jing-Jie Yang(杨静洁), Hong-Guo Zhang(张红国), Dan-Min Liu(刘丹敏), Ming Yue(岳明), Yi-Jian Jang(蒋毅坚). Chin. Phys. B, 2017, 26(6): 067502.
[7] Magnetic entropy change and magnetic properties of LaFe11.5Si1.5 after controlling the Curie temperature by partial substitution of Mn and hydrogenation
Bin Fu(傅斌) and Jie Han(韩洁). Chin. Phys. B, 2016, 25(2): 027501.
[8] Anomalous microstructure and magnetocaloric properties in off-stoichiometric La–Fe–Si and its hydride
He Chun (何春), Zhang Ming-Xiao (张明晓), Shao Yan-Yan (邵艳艳), Dong Jing-Du (董京杜), Yan A-Ru (闫阿儒), Liu Jian (刘剑). Chin. Phys. B, 2015, 24(7): 077503.
[9] Magnetic hysteresis and refrigeration capacity of Ni–Mn–Ga alloys near Martensitic transformation
Fu Bin(傅斌), Long Yi(龙毅), Duan Jing-Fang(段静芳), Wang Chao-Lun(王超伦), Chang Yong-Qin(常永勤), Ye Rong-Chang(叶荣昌), and Wu Guang-Heng(吴光恒). Chin. Phys. B, 2010, 19(9): 097501.
No Suggested Reading articles found!