CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure |
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东) |
College of Physics, Key Laboratory of Photonics Materials and Technology in Universities of Shandong, and Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, and National Demonstration Center for Experimental Applied Physics Education, Qingdao University, Qingdao 266071, China |
|
|
Abstract In this study, we observe a strong inverse magnetoelectric coupling in Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure, which produces large electric field (E-field) tunability of microwave magnetic properties. With the increase of the E-field from 0 to 8 kV/cm, the magnetic anisotropy field Heff is dramatically enhanced from 169 to 600 Oe, which further leads to a significant enhancement of ferromagnetic resonance frequency from 4.57 to 8.73 GHz under zero bias magnetic field, and a simultaneous decrease of the damping constant α from 0.021 to 0.0186. These features demonstrate that this multiferroic composite is a promising candidate for fabricating E-field tunable microwave components.
|
Received: 11 April 2017
Revised: 22 May 2017
Accepted manuscript online:
|
PACS:
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
77.55.Nv
|
(Multiferroic/magnetoelectric films)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
81.15.Cd
|
(Deposition by sputtering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674187). |
Corresponding Authors:
Shan-Dong Li
E-mail: lishd@qdu.edu.cn
|
Cite this article:
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东) Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure 2017 Chin. Phys. B 26 097601
|
[1] |
Yamaguchi M, Suezawa K, AraiK I, Takahashi Y, Kikuchi S, ShimadaY, Li W D, Tanabe S and Ito K 1999 J. Appl. Phys. 85 7919
|
[2] |
Sun N X and Srinivasan G 2012 SPIN 02 1240004
|
[3] |
Luo Y, Eßeling M, Zhang K, Güntherodt G and Samweret K 2006 Europhys. Lett. 73 415
|
[4] |
Harris V G 2012 IEEE Trans. Magn. 48 1075
|
[5] |
Pardavi-Horvath M 2000 J. Magn. Magn. Mater. 215 171
|
[6] |
Yamaguchi M, Suezawa K, Takahashi Y, Arai K I, Kikuchi S, Shimada Y, Tanabe S and Ito K 2000 J. Magn. Magn. Mater. 215-216 807
|
[7] |
Li S D, Du J G and Liao C N 2008 Thin Solid Films 516 7748
|
[8] |
Shi P, How H, Zuo X, Yoon S D, Oliver S A and Vettoria C 2001 IEEE Trans. Magn. 37 2389
|
[9] |
Capraro S, Rouiller T, Berre M L, Chatelon L P, Bayard B, Barbier D and Rousseau J J 2007 IEEE Trans. Comp. Pack. Tech. 30 411
|
[10] |
Niemier M 2014 Nat. Nanotech. 9 14
|
[11] |
Wang S X, Sun N X, Yamaguchi M and Yabukami S 2000 Nature 407 150
|
[12] |
Li S D, Li Q, Xu J, Yan S S, Miao G X, Kang S S, Dai Y Y, Jiao J Q and Lü Y G 2016 Adv. Funct. Mater. 26 3738
|
[13] |
Li S D, Xue Q, Duh J G, Du H L, Xu J, Wan Y, Li Q and Lü Y G 2014 Sci. Rep. 4 7393
|
[14] |
Jiang C J, Fan X L and Xue D S 2015 Chin. Phys. B 24 057504
|
[15] |
Li S D, Huang Z G, Duh J G and Yamaguchi M 2008 Appl. Phys. Lett. 92 092501
|
[16] |
Li W D, Kitakami O and Shimada Y 1998 J. Appl. Phys. 83 6661
|
[17] |
Yu E, Shim J S, Kim I, Kim J, Han S H, Kim H J and Kim K H 2005 IEEE Trans. Magn. 41 3259
|
[18] |
Li C Y, Chai G Z, Yang C C, Wang W F and Xue D S 2015 Sci. Rep. 5 17023
|
[19] |
Belyaev B A, Izotov A V and Solovev P N 2016 Phys. B 481 86
|
[20] |
Iljinas A, Dudonis J, Bručas R and Meškauskas A 2005 Nonlinear Analy. Model. Contr. 10 57
|
[21] |
Lamy Y and Viala B 2005 J. Appl. Phys. 97 10F910
|
[22] |
Fetisov Y K and Srinivasan G 2006 Appl. Phys. Lett. 88 143503
|
[23] |
Srinivasan G, Zavislyak I V and Tatarenko A S 2006 Appl. Phys. Lett. 89 152508
|
[24] |
Spaldin N and Fiebig M 2005 Science 309 391
|
[25] |
Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
|
[26] |
Scott J F 2007 Nat. Mater. 6 256
|
[27] |
Vaz C A F, Hoffman J, Anh C H and Ramesh R 2010 Adv. Mater. 22 2900
|
[28] |
Lou J, Liu M, Reed D, Ren Y and Sun N X 2009 Adv. Mater. 21 4711
|
[29] |
Liu M, Obi O, Lou J, Chen Y J, Cai Z H, Stoute S, Espanol M, Lew M, Situ X D, Ziemer K S, Harris V G and Sun N X 2009 Adv. Funct. Mater. 19 1826
|
[30] |
Liu M, Zhou Z, Nan T X, Howe B M, Brown G J and Sun N X 2013 Adv. Mater. 25 1435
|
[31] |
Liu X M, Yang R, Du H L, Li Q, Xu J, Wang X, Zong W H, Jin Z J, Zhao G X and Li S D 2017 Thin Solid Films 636 15
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|