Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 050305    DOI: 10.1088/1674-1056/ab7d9d
GENERAL Prev   Next  

Quantum legitimacy of reversible gate and a new design of multiplier based on R gate

Tingyu Ge(葛庭宇), Tinggui Zhang(张廷桂), Xiaofen Huang(黄晓芬)
School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
Abstract  Quantum full adders play a key role in the design of quantum computers. The efficiency of a quantum adder directly determines the speed of the quantum computer, and its complexity is closely related to the difficulty and the cost of building a quantum computer. The existed full adder based on R gate is a great design but it is not suitable to construct a quantum multiplier. We show the quantum legitimacy of some common reversible gates, then use R gate to propose a new design of a quantum full adder. We utilize the new designed quantum full adder to optimize the quantum multiplier which is based on R gate. It is shown that the new designed one can be optimized by a local optimization rule so that it will have lower quantum cost than before.
Keywords:  reversible gate      quantum full adder      quantum multiplier  
Received:  10 January 2020      Revised:  21 February 2020      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  02.20.Hj (Classical groups)  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11861031).
Corresponding Authors:  Tinggui Zhang     E-mail:  tinggui333@163.com

Cite this article: 

Tingyu Ge(葛庭宇), Tinggui Zhang(张廷桂), Xiaofen Huang(黄晓芬) Quantum legitimacy of reversible gate and a new design of multiplier based on R gate 2020 Chin. Phys. B 29 050305

[1] Grover L K 1997 Phys. Rev. Lett. 79 325
[2] Shor P W 1999 Siam Rev. 41 303
[3] Landauer R 1961 IBM J. Res. Dev. 5 183
[4] Das K and De D 2010 Int. J. Nanosci. 09 201
[5] Chee Y H, Niknejad A M and Rabaey J 2006 IEEE J. Solid-State Circuits 41 1740
[6] Shamir J, Caulfield H J, Micelli W J and Seymour R J 1986 Appl. Opt. 25 1604
[7] Cervantes-Salido V M, Jaime O, Brizuela C A, Israel M and Pérez M 2013 Appl. Soft Comput. 13 4594
[8] Zhang J, Albelda M T, Liu Y and Canary J W 2005 Chirality 17 404
[9] Ritter S, NLleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mücke M, Figueroa E, Bochmann J and Rempe G 2012 Nature 484 195
[10] Ni L, Guan Z and Zhu W 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, April 2-4, 2010, Jinggangshan, China, pp. 109-113
[11] Thersesal T, Sathish K and Aswinkumor R 2015 Int. J. Sci. Res. Publ. 5 1
[12] Rangaraju H G, Venugopal U, Muralidhara K N and Raja K B 2010 International Conference on Advances in Communication, Network, and Computing (Berlin: Springer)
[13] Islam M S and Islam M R 2005 Asian J. Inf. Technol. 4 1146
[14] Banerjee A and Pathak A 2009 arXiv:0907.3357.1
[15] Montaser R, Younes A and Abdelaty M 2017 Quantum Matter 2017 1403
[16] Montaser R, Younes A and Abdel-Aty M 2019 Int. J. Theor. Phys. 58 167
[17] Morrison M, Lewandowski M, Meana R and Ranganathan N 2011 11th IEEE International Conference on Nanotechnology, August 15-18, 2011, Portland, OR, USA, pp. 417-420
[18] Miller D M and Sasanian Z 2010 53rd IEEE International Midwest Symposium on Circuits and Systems, August 1-4, 2010, Seattle, WA, USA, pp. 260-263
[19] Bhuvana B P and Bhaaskaran V S K 2018 Quantum Cost Optimization of Reversible Adder/Subtractor Using a Novel Reversible Gate in Innovations in Electronics and Communication Engineering. Lecture Notes in Networks and Systems ed Saini H, Singh R and Reddy K Vol. 7 (Singapore: Springer)
[20] Rahman M M, Banerjee A, Dueck G W and Pathak A 2011 41st IEEE International Symposium on Multiple-Valued Logic, May 23-25, 2011, Tuusula, Finland, pp. 86-92
[21] Nielsen M A and Chuang I L 2011 Quantum Computation and Quantum Information 10th Anniversary Edition (Cambridge: Cambridge University Press)
[22] Patel R B, Ho J, Ferreyrol F, Ralph T C and Pryde G J 2016 Sci. Adv. 2 1501531
[23] Iwama K and Yamashita S 2003 New Generation Comput. 21 297
[24] Miller D M, Maslov D and Dueck G W 2003 Transformation Based Algorithm for Reversible Logic Synthesis (New York: Association for Computing Machinery) p. 318
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[3] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[4] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[5] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[6] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[7] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[8] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[9] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[10] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[11] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[12] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[13] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[14] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[15] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
No Suggested Reading articles found!