|
|
Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter |
Yan-Jun Liu(刘彦军)1, Mei-Ya Wang(王美亚)1, Zhong-Cheng Xiang(相忠诚)2, and Hai-Bin Wu(吴海滨)1,† |
1 College of Physics, Mechanical and Electronical College, Shijiazhuang University, Shijiazhuang 050035, China; 2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We study the wave-particle duality in a general Mach-Zehnder interferometer with an asymmetric beam splitter from the viewpoint of quantum information theory. The correlations (including the classical correlation and the quantum correlation) between the particle and the which-path detector are derived when they are in pure state or mixed state at the output of Mach-Zehnder interferometer. It is found that the fringe visibility and the correlations are effected by the asymmetric beam splitter and the input state of the particle. The complementary relations between the fringe visibility and the correlations are also presented.
|
Received: 29 May 2022
Revised: 31 July 2022
Accepted manuscript online: 24 August 2022
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
07.60.Ly
|
(Interferometers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975095), the Natural Science Foundation of Hebei Province, China (Grant No. A2022106001) and Shijiazhuang University Doctoral Scientific Research Startup Fund Project (Grant No. 20BS023). |
Corresponding Authors:
Hai-Bin Wu
E-mail: 1102037@sjzc.edu.cn
|
Cite this article:
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨) Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter 2022 Chin. Phys. B 31 110305
|
[1] Bohr N 1928 Nature 121 580 [2] Wootters W K and Zurek W H 1979 Phys. Rev. D 19 473 [3] Greenberger D M and Yasin A 1988 Phys. Lett. A 128 391 [4] Jaeger G, Shimony A and Vaidman L 1995 Phys. Rev. A 51 54 [5] Englert B G 1996 Phys. Rev. Lett. 77 2154 [6] Qi F H, Wang Z Y, Xu W W, Chen X W and Li Z Y 2020 Photon. Res. 8 622 [7] Yoon T H and Cho M 2021 Sci. Adv. 7 eabi9268 [8] Wang D Y, Wu J J, Ding J F, Liu Y W, Huang A Q and Yang X J 2021 Entropy 23 122 [9] Pozzobom M B, Basso M L W and Maziero J 2021 Phys. Rev. A 103 022212 [10] Dieguez P R, Guimares J R, Peterson J P S, Angelo R M and Serra R M 2021 arXiv: 2104.08152v2 [quant-ph] [11] Mittelstaedt P, Prieu A and Schieder R 1987 Found. Phys. 17 891 [12] Dürr S and Rempe G 2000 Am. J. Phys. 68 1021 [13] Ban M 2008 Mod. Opt. 55 3625 [14] Bana M, Shibataa F and Kitajimaa S 2009 J. Mod. Opt. 56 89 [15] Liu N L, Li L, Yu S X and Chen Z B 2009 Phys. Rev. A 79 052108 [16] Bosyk G M, Portesi M, Holik F and Plastino A 2013 Phys. Scr. 87 065002 [17] Angelo R M and Ribeiro A D 2015 Found. Phys. 45 1407 [18] Liu Y, Lu J and Zhou L 2017 Opt. Express 25 202 [19] Verma H, Zych M and Costa F 2021 Quantum 5 525 [20] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2008 Phys. Rev. Lett. 100 220402 [21] Han Y, Wang W C, Wei W, Chen P X and Li C Z 2009 Chin. Phys. Lett. 26 040303 [22] Ionicioiu R and Terno D R 2011 Phys. Rev. Lett. 107 230406 [23] Li L, Liu N L and Yu S X 2012 Phys. Rev. A 85 054101 [24] Tang J S, Li Y L, Li C F and Guo G C 2013 Phys. Rev. A 88 014103 [25] Guo Q, Cheng L Y, Wang H F and Zhang S 2015 Int. J. Theor. Phys. 54 2517 [26] Long G L, Qin W, Yang Z and Li J L 2018 Sci. China 61 030311 [27] Liu Y J, Lu J and Zhou L 2017 Laser Phys. Lett. 14 055204 [28] Liu Y J, Lu J, Peng Z H, Zhou L and Zheng D N 2019 Chin. Phys. B 28 030303 [29] Liu J Z, Liu Y J and Lu J 2019 Chin. Phys. Lett. 36 050302 [30] Scully M O and Drühl K 1982 Phys. Rev. A 25 2208 [31] Zurek W H 2000 Ann. Phys. (Leipzig) 9 855 [32] Henderson L and Vedral V 2001 J. Phys. A 34 6899 [33] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 [34] Chefles A 2000 Contemp. Phys. 41 401 [35] Henderson L and V Vedral 2001 J. Phys. A 34 6899 [36] Zurek W H 1982 Phys. Rev. D 26 1862 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|