Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 110305    DOI: 10.1088/1674-1056/ac8c3b
GENERAL Prev   Next  

Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter

Yan-Jun Liu(刘彦军)1, Mei-Ya Wang(王美亚)1, Zhong-Cheng Xiang(相忠诚)2, and Hai-Bin Wu(吴海滨)1,†
1 College of Physics, Mechanical and Electronical College, Shijiazhuang University, Shijiazhuang 050035, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We study the wave-particle duality in a general Mach-Zehnder interferometer with an asymmetric beam splitter from the viewpoint of quantum information theory. The correlations (including the classical correlation and the quantum correlation) between the particle and the which-path detector are derived when they are in pure state or mixed state at the output of Mach-Zehnder interferometer. It is found that the fringe visibility and the correlations are effected by the asymmetric beam splitter and the input state of the particle. The complementary relations between the fringe visibility and the correlations are also presented.
Keywords:  wave-particle duality      fringe visibility      correlation      general Mach-Zehnder interferometer  
Received:  29 May 2022      Revised:  31 July 2022      Accepted manuscript online:  24 August 2022
PACS:  03.67.-a (Quantum information)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  07.60.Ly (Interferometers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975095), the Natural Science Foundation of Hebei Province, China (Grant No. A2022106001) and Shijiazhuang University Doctoral Scientific Research Startup Fund Project (Grant No. 20BS023).
Corresponding Authors:  Hai-Bin Wu     E-mail:  1102037@sjzc.edu.cn

Cite this article: 

Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨) Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter 2022 Chin. Phys. B 31 110305

[1] Bohr N 1928 Nature 121 580
[2] Wootters W K and Zurek W H 1979 Phys. Rev. D 19 473
[3] Greenberger D M and Yasin A 1988 Phys. Lett. A 128 391
[4] Jaeger G, Shimony A and Vaidman L 1995 Phys. Rev. A 51 54
[5] Englert B G 1996 Phys. Rev. Lett. 77 2154
[6] Qi F H, Wang Z Y, Xu W W, Chen X W and Li Z Y 2020 Photon. Res. 8 622
[7] Yoon T H and Cho M 2021 Sci. Adv. 7 eabi9268
[8] Wang D Y, Wu J J, Ding J F, Liu Y W, Huang A Q and Yang X J 2021 Entropy 23 122
[9] Pozzobom M B, Basso M L W and Maziero J 2021 Phys. Rev. A 103 022212
[10] Dieguez P R, Guimares J R, Peterson J P S, Angelo R M and Serra R M 2021 arXiv: 2104.08152v2 [quant-ph]
[11] Mittelstaedt P, Prieu A and Schieder R 1987 Found. Phys. 17 891
[12] Dürr S and Rempe G 2000 Am. J. Phys. 68 1021
[13] Ban M 2008 Mod. Opt. 55 3625
[14] Bana M, Shibataa F and Kitajimaa S 2009 J. Mod. Opt. 56 89
[15] Liu N L, Li L, Yu S X and Chen Z B 2009 Phys. Rev. A 79 052108
[16] Bosyk G M, Portesi M, Holik F and Plastino A 2013 Phys. Scr. 87 065002
[17] Angelo R M and Ribeiro A D 2015 Found. Phys. 45 1407
[18] Liu Y, Lu J and Zhou L 2017 Opt. Express 25 202
[19] Verma H, Zych M and Costa F 2021 Quantum 5 525
[20] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2008 Phys. Rev. Lett. 100 220402
[21] Han Y, Wang W C, Wei W, Chen P X and Li C Z 2009 Chin. Phys. Lett. 26 040303
[22] Ionicioiu R and Terno D R 2011 Phys. Rev. Lett. 107 230406
[23] Li L, Liu N L and Yu S X 2012 Phys. Rev. A 85 054101
[24] Tang J S, Li Y L, Li C F and Guo G C 2013 Phys. Rev. A 88 014103
[25] Guo Q, Cheng L Y, Wang H F and Zhang S 2015 Int. J. Theor. Phys. 54 2517
[26] Long G L, Qin W, Yang Z and Li J L 2018 Sci. China 61 030311
[27] Liu Y J, Lu J and Zhou L 2017 Laser Phys. Lett. 14 055204
[28] Liu Y J, Lu J, Peng Z H, Zhou L and Zheng D N 2019 Chin. Phys. B 28 030303
[29] Liu J Z, Liu Y J and Lu J 2019 Chin. Phys. Lett. 36 050302
[30] Scully M O and Drühl K 1982 Phys. Rev. A 25 2208
[31] Zurek W H 2000 Ann. Phys. (Leipzig) 9 855
[32] Henderson L and Vedral V 2001 J. Phys. A 34 6899
[33] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[34] Chefles A 2000 Contemp. Phys. 41 401
[35] Henderson L and V Vedral 2001 J. Phys. A 34 6899
[36] Zurek W H 1982 Phys. Rev. D 26 1862
[1] Investigating the characteristic delay time in the leader-follower behavior in children single-file movement
Shu-Qi Xue(薛书琦), Nirajan Shiwakoti, Xiao-Meng Shi(施晓蒙), and Yao Xiao(肖尧). Chin. Phys. B, 2023, 32(2): 028901.
[2] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[3] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[4] Coherence migration in high-dimensional bipartite systems
Zhi-Yong Ding(丁智勇), Pan-Feng Zhou(周攀峰), Xiao-Gang Fan(范小刚),Cheng-Cheng Liu(刘程程), Juan He(何娟), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(6): 060308.
[5] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[6] Analysis of period and visibility of dual phase grating interferometer
Jun Yang(杨君), Jian-Heng Huang(黄建衡), Yao-Hu Lei(雷耀虎), Jing-Biao Zheng(郑景标), Yu-Zheng Shan(单雨征), Da-Yu Guo(郭大育), and Jin-Chuan Guo(郭金川). Chin. Phys. B, 2022, 31(5): 058701.
[7] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[8] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[9] Cross correlation mediated by distant Majorana zero modes with no overlap
Lupei Qin(秦陆培), Wei Feng(冯伟), and Xin-Qi Li(李新奇). Chin. Phys. B, 2022, 31(1): 017402.
[10] An optimized cluster density matrix embedding theory
Hao Geng(耿浩) and Quan-lin Jie(揭泉林). Chin. Phys. B, 2021, 30(9): 090305.
[11] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[12] HeTDSE: A GPU based program to solve the full-dimensional time-dependent Schrödinger equation for two-electron helium subjected to strong laser fields
Xi Zhao(赵曦), Gangtai Zhang(张刚台), Tingting Bai(白婷婷), Jun Wang(王俊), and Wei-Wei Yu(于伟威). Chin. Phys. B, 2021, 30(7): 073201.
[13] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[14] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[15] Wave-particle duality relation with a quantum N-path beamsplitter
Dong-Yang Wang(王冬阳), Jun-Jie Wu(吴俊杰), Yi-Zhi Wang(王易之), Yong Liu(刘雍), An-Qi Huang(黄安琪), Chun-Lin Yu(于春霖), and Xue-Jun Yang(杨学军). Chin. Phys. B, 2021, 30(5): 050302.
No Suggested Reading articles found!