Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020301    DOI: 10.1088/1674-1056/ac7bfe
GENERAL Prev   Next  

Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain

Xi-Xi Bao(包茜茜)1, Gang-Feng Guo(郭刚峰)1, and Lei Tan(谭磊)1,2,†
1 Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China;
2 Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
Abstract  An extended Su-Schrieffer-Heeger (SSH) model containing four periods of the hopping coefficients, called SSH4 model, is constructed to explore robust quantum state transfer. The gap state protected by the energy gap plays the role of the topological channel where the particle initially located at the last lattice site has the probability to arise at the first and all even lattice sites equally. Serving those sites as ports, a multi-port router can be realized naturally, and the fidelity reaches unity in a wide range of parameters under the long chain and random disorder. Further, when we reduce the third intracell hopping to a small value, the occupancy probability of the second lattice site in every unit cell will reduce to zero, by which a new topological router can be induced. In addition, our SSH4 model can work as a 1/3 beam splitter. Namely, the particle initially occupies the first lattice site and finally appears with equal probability at three lattice sites. We can also realize a 1/2 beam splitter. Our four-period SSH model provides a novel way for topological quantum information processing and can engineer two kinds of quantum optical devices.
Keywords:  topological state transfer      robust      high fidelity  
Received:  20 April 2022      Revised:  10 June 2022      Accepted manuscript online:  27 June 2022
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.67.-a (Quantum information)  
  05.60.Gg (Quantum transport)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874190, 61835013, and 12047501), and the Supercomputing Center of Lanzhou University.
Corresponding Authors:  Lei Tan     E-mail:  tanlei@lzu.edu.cn

Cite this article: 

Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊) Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain 2023 Chin. Phys. B 32 020301

[1] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313
[2] Duan L M and Monroe C 2010 Rev. Mod. Phys. 82 1209
[3] Suter D and Álvarez G A 2016 Rev. Mod. Phys. 88 041001
[4] Kay A 2009 Phys. Rev. A 79 042330
[5] Paganelli S, Lorenzo S, Apollaro T J G, Plastina F and Giorgi G L 2013 Phys. Rev. A 87 062309
[6] Lorenzo S, Apollaro T J G, Paganelli S, Palma G M and Plastina F 2015 Phys. Rev. A 91 042321
[7] Plenio M B, Hartley J and Eisert J 2004 New J. Phys. 6 36
[8] Silveri M P, Kumar K S, Tuorila J, Li J, Vepsäläinen A, Thuneberg E V and Paraoanu G S 2015 New J. Phys. 17 043058
[9] Vijay S and Fu L 2016 Phys. Rev. B 94 235446
[10] Stannigel K, Rabl P, Sørensen A S, Lukin M D and Zoller P 2011 Phys. Rev. A 84 042341
[11] Chen Q and Feng M 2010 Phys. Rev. A 82 052329
[12] Zhang Z T and Yu Y 2013 Phys. Rev. A 87 032327
[13] Li D X and Shao X Q 2018 Phys. Rev. A 98 062338
[14] Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P and Rabl P 2012 Phys. Rev. Lett. 109 013603
[15] Rips S and Hartmann M J 2013 Phys. Rev. Lett. 110 120503
[16] Chen J, Nurdin H I and Yamamoto N 2020 Phys. Rev. Appl. 14 024065
[17] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[18] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 87902
[19] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603
[20] Zhang J, Peng K and Braunstein S L 2003 Phys. Rev. A 68 013808
[21] Yao N Y, Jiang L, Gorshkov A V, Gong Z X, Zhai A, Duan L M and Lukin M D 2011 Phys. Rev. Lett. 106 040505
[22] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[23] Yang C P, Chu S I and Han S 2003 Phys. Rev. A 67 042311
[24] Yang C P, Chu S I and Han S 2004 Phys. Rev. Lett. 92 117902
[25] Bose S 2003 Phys. Rev. Lett. 91 207901
[26] Brandes T and Vorrath T 2002 Phys. Rev. B 66 075341
[27] He Y, He Y M, Wei Y J, Jiang X, Chen K, Lu C Y, Pan J W, Schneider C, Kamp M and Höfling S 2017 Phys. Rev. Lett. 119 060501
[28] Dlaska C, Vermersch B and Zoller P 2017 Quantum Sci. Technol. 2 015001
[29] Li L, Xu Z and Chen S 2014 Phys. Rev. B 89 085111
[30] Gröning O, Wang S, Yao X, Pignedoli C A, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Müllen K, Ruffieux P and Fasel R 2018 Nature 560 209
[31] Di Liberto M, Recati A, Carusotto I and Menotti C 2016 Phys. Rev. A 94 062704
[32] Bao X X, Guo G F, Du X P, Gu H Q and Tan L 2021 J. Phys.: Condens. Matter 33 185401
[33] Guo G F, Bao X X and Tan L 2021 New J. Phys. 23 123007
[34] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[35] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[36] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[37] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
[38] Shen S Q 2012 Topological Insulators Dirac Equation in Condensed Matters. In Springer Series in Solid-State Sciences vol. 174 (Berlin: Springer)
[39] Wu Q, Du L and Sacksteder V E 2013 Phys. Rev. B 88 045429
[40] Chen L, Wang Z F and Liu F 2013 Phys. Rev. B 87 235420
[41] Paananen T and Dahm T 2013 Phys. Rev. B 87 195447
[42] Malki M and Uhrig G S 2017 Phys. Rev. B 95 235118
[43] Brouwer P W, Duckheim M, Romito A and von Oppen F 2011 Phys. Rev. B 84 144526
[44] Mei F, Chen G, Tian L, Zhu S L and Jia S 2018 Phys. Rev. A 98 012331
[45] Qi L, Wang G L, Liu S, Zhang S and Wang H F 2020 Phys. Rev. A 102 022404
[46] Zheng L N, Qi L, Cheng L Y, Wang H F and Zhang S 2020 Phys. Rev. A 102 012606
[47] Qi L, Yan Y, Xing Y, Zhao X D, Liu S, Cui W X, Han X, Zhang S and Wang H F 2021 Phys. Rev. Research 3 023037
[48] Asbóth J, Oroszlány L and Pályi A 2016 A Short Course on Topological Insulators. In Lecture Notes in Physics vol. 919 (Berlin: Springer)
[49] Qi L, Wang G L, Liu S, Zhang S and Wang H F 2020 Phys. Rev. A 102 022404
[50] Schonbrun E, Wu Q, Park W, Yamashita T and Summers C J 2006 Opt. Lett. 31 3104
[51] Cassettari D, Hessmo B, Folman R, Maier T and Schmiedmayer J 2000 Phys. Rev. Lett. 85 5483
[52] Chen C C, Chien H D and Luan P G 2004 Appl. Opt. 43 6187
[1] Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes
Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财). Chin. Phys. B, 2023, 32(4): 047502.
[2] A robust method for performance evaluation of the vapor cell for magnetometry
Zhi Liu(柳治), Sheng Zou(邹升), Kaifeng Yin(尹凯峰), Tao Shi(石韬),Junjian Tang(唐钧剑), and Heng Yuan(袁珩). Chin. Phys. B, 2023, 32(4): 040703.
[3] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[4] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[5] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[6] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[7] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[8] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[9] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[10] Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code
Shi-Hui Wei(魏士慧), Fen-Zhuo Guo(郭奋卓), Xin-Hui Li(李新慧), Qiao-Yan Wen(温巧燕). Chin. Phys. B, 2019, 28(7): 070304.
[11] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[12] The robustness of sparse network under limited attack capacity
Xiao-Juan Wang(王小娟), Mei Song(宋梅), Lei Jin(金磊), Zhen Wang(王珍). Chin. Phys. B, 2017, 26(8): 088901.
[13] Robust H control for uncertain Markovian jump systems with mixed delays
R Saravanakumar, M Syed Ali. Chin. Phys. B, 2016, 25(7): 070201.
[14] Lensless ghost imaging through the strongly scattering medium
Zhe Yang(杨哲), Lianjie Zhao(赵连洁), Xueliang Zhao(赵学亮), Wei Qin(秦伟), Junlin Li(李俊林). Chin. Phys. B, 2016, 25(2): 024202.
[15] Degree distribution and robustness of cooperativecommunication network with scale-free model
Wang Jian-Rong (王建荣), Wang Jian-Ping (王建萍), He Zhen (何振), Xu Hai-Tao (许海涛). Chin. Phys. B, 2015, 24(6): 060101.
No Suggested Reading articles found!