|
|
Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain |
Xi-Xi Bao(包茜茜)1, Gang-Feng Guo(郭刚峰)1, and Lei Tan(谭磊)1,2,† |
1 Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China; 2 Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract An extended Su-Schrieffer-Heeger (SSH) model containing four periods of the hopping coefficients, called SSH4 model, is constructed to explore robust quantum state transfer. The gap state protected by the energy gap plays the role of the topological channel where the particle initially located at the last lattice site has the probability to arise at the first and all even lattice sites equally. Serving those sites as ports, a multi-port router can be realized naturally, and the fidelity reaches unity in a wide range of parameters under the long chain and random disorder. Further, when we reduce the third intracell hopping to a small value, the occupancy probability of the second lattice site in every unit cell will reduce to zero, by which a new topological router can be induced. In addition, our SSH4 model can work as a 1/3 beam splitter. Namely, the particle initially occupies the first lattice site and finally appears with equal probability at three lattice sites. We can also realize a 1/2 beam splitter. Our four-period SSH model provides a novel way for topological quantum information processing and can engineer two kinds of quantum optical devices.
|
Received: 20 April 2022
Revised: 10 June 2022
Accepted manuscript online: 27 June 2022
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
03.67.-a
|
(Quantum information)
|
|
05.60.Gg
|
(Quantum transport)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874190, 61835013, and 12047501), and the Supercomputing Center of Lanzhou University. |
Corresponding Authors:
Lei Tan
E-mail: tanlei@lzu.edu.cn
|
Cite this article:
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊) Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain 2023 Chin. Phys. B 32 020301
|
[1] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313 [2] Duan L M and Monroe C 2010 Rev. Mod. Phys. 82 1209 [3] Suter D and Álvarez G A 2016 Rev. Mod. Phys. 88 041001 [4] Kay A 2009 Phys. Rev. A 79 042330 [5] Paganelli S, Lorenzo S, Apollaro T J G, Plastina F and Giorgi G L 2013 Phys. Rev. A 87 062309 [6] Lorenzo S, Apollaro T J G, Paganelli S, Palma G M and Plastina F 2015 Phys. Rev. A 91 042321 [7] Plenio M B, Hartley J and Eisert J 2004 New J. Phys. 6 36 [8] Silveri M P, Kumar K S, Tuorila J, Li J, Vepsäläinen A, Thuneberg E V and Paraoanu G S 2015 New J. Phys. 17 043058 [9] Vijay S and Fu L 2016 Phys. Rev. B 94 235446 [10] Stannigel K, Rabl P, Sørensen A S, Lukin M D and Zoller P 2011 Phys. Rev. A 84 042341 [11] Chen Q and Feng M 2010 Phys. Rev. A 82 052329 [12] Zhang Z T and Yu Y 2013 Phys. Rev. A 87 032327 [13] Li D X and Shao X Q 2018 Phys. Rev. A 98 062338 [14] Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P and Rabl P 2012 Phys. Rev. Lett. 109 013603 [15] Rips S and Hartmann M J 2013 Phys. Rev. Lett. 110 120503 [16] Chen J, Nurdin H I and Yamamoto N 2020 Phys. Rev. Appl. 14 024065 [17] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221 [18] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 87902 [19] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603 [20] Zhang J, Peng K and Braunstein S L 2003 Phys. Rev. A 68 013808 [21] Yao N Y, Jiang L, Gorshkov A V, Gong Z X, Zhai A, Duan L M and Lukin M D 2011 Phys. Rev. Lett. 106 040505 [22] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392 [23] Yang C P, Chu S I and Han S 2003 Phys. Rev. A 67 042311 [24] Yang C P, Chu S I and Han S 2004 Phys. Rev. Lett. 92 117902 [25] Bose S 2003 Phys. Rev. Lett. 91 207901 [26] Brandes T and Vorrath T 2002 Phys. Rev. B 66 075341 [27] He Y, He Y M, Wei Y J, Jiang X, Chen K, Lu C Y, Pan J W, Schneider C, Kamp M and Höfling S 2017 Phys. Rev. Lett. 119 060501 [28] Dlaska C, Vermersch B and Zoller P 2017 Quantum Sci. Technol. 2 015001 [29] Li L, Xu Z and Chen S 2014 Phys. Rev. B 89 085111 [30] Gröning O, Wang S, Yao X, Pignedoli C A, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Müllen K, Ruffieux P and Fasel R 2018 Nature 560 209 [31] Di Liberto M, Recati A, Carusotto I and Menotti C 2016 Phys. Rev. A 94 062704 [32] Bao X X, Guo G F, Du X P, Gu H Q and Tan L 2021 J. Phys.: Condens. Matter 33 185401 [33] Guo G F, Bao X X and Tan L 2021 New J. Phys. 23 123007 [34] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [35] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [36] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005 [37] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004 [38] Shen S Q 2012 Topological Insulators Dirac Equation in Condensed Matters. In Springer Series in Solid-State Sciences vol. 174 (Berlin: Springer) [39] Wu Q, Du L and Sacksteder V E 2013 Phys. Rev. B 88 045429 [40] Chen L, Wang Z F and Liu F 2013 Phys. Rev. B 87 235420 [41] Paananen T and Dahm T 2013 Phys. Rev. B 87 195447 [42] Malki M and Uhrig G S 2017 Phys. Rev. B 95 235118 [43] Brouwer P W, Duckheim M, Romito A and von Oppen F 2011 Phys. Rev. B 84 144526 [44] Mei F, Chen G, Tian L, Zhu S L and Jia S 2018 Phys. Rev. A 98 012331 [45] Qi L, Wang G L, Liu S, Zhang S and Wang H F 2020 Phys. Rev. A 102 022404 [46] Zheng L N, Qi L, Cheng L Y, Wang H F and Zhang S 2020 Phys. Rev. A 102 012606 [47] Qi L, Yan Y, Xing Y, Zhao X D, Liu S, Cui W X, Han X, Zhang S and Wang H F 2021 Phys. Rev. Research 3 023037 [48] Asbóth J, Oroszlány L and Pályi A 2016 A Short Course on Topological Insulators. In Lecture Notes in Physics vol. 919 (Berlin: Springer) [49] Qi L, Wang G L, Liu S, Zhang S and Wang H F 2020 Phys. Rev. A 102 022404 [50] Schonbrun E, Wu Q, Park W, Yamashita T and Summers C J 2006 Opt. Lett. 31 3104 [51] Cassettari D, Hessmo B, Folman R, Maier T and Schmiedmayer J 2000 Phys. Rev. Lett. 85 5483 [52] Chen C C, Chien H D and Luan P G 2004 Appl. Opt. 43 6187 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|