Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 030306    DOI: 10.1088/1674-1056/ac7450
GENERAL Prev   Next  

Performance analysis of quantum key distribution using polarized coherent-states in free-space channel

Zengte Zheng(郑增特)1, Ziyang Chen(陈子扬)2,†, Luyu Huang(黄露雨)1, Xiangyu Wang(王翔宇)1,‡, and Song Yu(喻松)1
1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
Abstract  In free space channel, continuous-variable quantum key distribution (CV-QKD) using polarized coherent-states can not only make the signal state more stable and less susceptible to interference based on the polarization non-sensitive of the free-space channel, but also reduce the noise introduced by phase interference. However, arbitrary continuous modulation can not be carried out in the past polarization coding, resulting in that the signal state can not obtain arbitrary continuous value in Poincare space, and the security analysis of CV-QKD using polarized coherent-states in free space is not complete. Here we propose a new modulation method to extend the modulation range of signal states with an optical-fiber-based polarization controller. In particular, in terms of the main influence factors in the free-space channel, we utilize the beam extinction and elliptical model when considering the transmittance and adopt the formulation of secret key rate. In addition, the performance of the proposed scheme under foggy weather is also taken into consideration to reveal the influence of severe weather. Numerical simulation shows that the proposed scheme is seriously affected by attenuation under foggy weather. The protocol fails when visibility is less than 1 km. At the same time, the wavelength can affect the performance of the proposed scheme. Specifically, under foggy weather, the longer the wavelength, the smaller the attenuation coefficient, and the better the transmission performance. Our proposed scheme can expand the modulation range of signal state, and supplement the security research of the scheme in the free-space channel, thus can provide theoretical support for subsequent experiments.
Keywords:  polarized coherent-states      free-space channel      performance analysis  
Received:  18 March 2022      Revised:  09 May 2022      Accepted manuscript online:  29 May 2022
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: This work was supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61531003), the National Natural Science Foundation of China (Grant No. 62001041), China Postdoctoral Science Foundation (Grant No. 2020TQ0016), and the Fund of State Key Laboratory of Information Photonics and Optical Communications.
Corresponding Authors:  Ziyang Chen, Xiangyu Wang     E-mail:  chenziyang@pku.edu.cn;xywang@bupt.edu.cn

Cite this article: 

Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松) Performance analysis of quantum key distribution using polarized coherent-states in free-space channel 2023 Chin. Phys. B 32 030306

[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2014 Rev. Mod. Phys. 74 145
[2] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[3] Xu F H, Ma X F, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002
[4] Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P and Wallden P 2020 Adv. Opt. Photon. 12 1012
[5] Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S and Peng K C 2017 Chin. Phys. B 26 40303
[6] Zhu J, He G Q and Zeng G H 2007 Chin. Phys. B 16 1364
[7] Shi J J, Li B P and Huang D 2020 Chin. Phys. B 29 040301
[8] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[9] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C and Lam P K 2004 Phys. Rev. Lett. 93 170504
[10] Qi B, Zhu W, Qian L and Lo H K 2010 New J. Phys. 12 103042
[11] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P and Diamanti E 2013 Nat. Photon. 7 378
[12] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S and Andersen U L 2015 Nat. Photon. 9 397
[13] Weedbrook C, Ottaviani C and Pirandola S 2014 Phys. Rev. A 89 012309
[14] Soh D B S, Brif C, Coles P J, Lütkenhaus N, Camacho R M, Urayama J and Sarovar M 2015 Phys. Rev. X 5 041010
[15] Qi B, Lougovski P, Pooser R, Grice W and Bobrek M 2015 Phys. Rev. X 5 041009
[16] Rupesh K, Hao Q and Romain Alléaume 2015 New J. Phys. 17 043027
[17] Zhang Y C, Li Z Y, Chen Z Y at al. 2019 Quantum Sci. Technol. 4 035006
[18] Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S and Guo H 2020 Phys. Rev. Lett. 125 010502
[19] Arnold T, Tyrnita M, Keith D and Ronald M 2010 Proceedings of SPIE 7815, Quantum Communications and Quantum Imaging VIII, August 30, 2010, San Diego, California, United States, p. 179
[20] Fedrizzi A, Ursin R, Herbst T, Nespoli M, Prevedel R, Scheidl T, Tiefenbacher F, Jennewein T and Zeilinger A 2009 Nat. Phys. 5 389
[21] Buttler W T, Hughes R J, Kwiat P G, Lamoreaux S K, Luther G G, Morgan G L, Nordholt J E, Peterson C G and Simmons C M 1998 Proceedings of SPIE 3385, Photonic Quantum Computing II, July 6, 1998, Orlando, FL, United States, p. 14
[22] Liao S K, Yong H L, Liu C, at al. 2017 Nat. Photon. 11 509
[23] Lorenz S, Rigas J, Heid M, Andersen U L, Lütkenhaus N and Leuchs G 2006 Phys. Rev. A 74 042326
[24] Heim B, Elser D, Bartley T, Sabuncu M, Wittmann C, Sych D, Marquardt C and Leuchs G 2010 Appl. Phys. B 98 635
[25] Heim B, Peuntinger C, Killoran N, Khan I, Wittmann C, Marquardt C and Leuchs G 2014 New J. Phys. 11 113018
[26] Lorenz S, Korolkova N and Leuchs G 2004 Appl. Phys. B 79 273
[27] Elser D, Bartley T, Heim B, Wittmann C, Sych D and Leuchs G 2009 New J. Phys. 11 045014
[28] Peuntinger C, Heim B, Müller C R, Gabriel C, Marquardt C and Leuchs G 2014 Phys. Rev. Lett. 113 060502
[29] Shen S Y, Dai M W, Zheng X T, Sun Q Y, Guo G C and Han Z F 2019 Phys. Rev. A 100 012325
[30] Barbosa G A, Corndorf E, Kumar P and Yuen H P 2002 Proceedings of SPIE 4821, Free-Space Laser Communication and Laser Imaging II, December, 9, 2002, Seattle, WA, United States, p. 409
[31] Wang L, Zhao S M, Gong L Y and Cheng W W 2015 Chin. Phys. B 24 120307
[32] Ricklin J C, Hammel S M, Eaton F D and Lachinova S L 2006 J. Opt. Fiber Commun. Rep. 3 111
[33] Majumdar A K and Ricklin J C 2005 Proceedings of SPIE 5892, Free-Space Laser Communications V, September 12, 2005, San Diego, California, United States, p. 149
[34] Vidiella-Barranco A and Borelli L F M 2006 Int. J. Mod. Phys. B 20 1287
[35] Bowen W P, Treps N, Schnabel R, Ralph T C and Lam P K 2003 J. Opt. B-Quantum S. O. 5 S467
[36] Schaefer B, Collett E, Smyth R, Barrett D and Fraher B 2007 Am. J. Phys. 75 163
[37] Shen S Y, Zheng X T, Guo G C and Han Z F 2020 Opt. Lett. 45 2592
[38] Gu W Y, Zhao S H, Dong C, Zhu Z D and Qu Y Y 2019 Acta Phys. Sin. 68 090302 (in Chinese)
[39] Zhang S J, Ma H X, Wang X, Zhou C, Bao W S and Zhang H L 2019 Chin. Phys. B 28 80304
[40] Zhang S J, Xiao C, Zhou C, Wang X, Yao J S, Zhang H L and Bao W S 2020 Chin. Phys. B 29 20301
[41] Xie C L, Guo Y, Wang Y J, Huang D and Zhang L 2018 Chin. Phys. Lett. 35 090302
[42] Zhang X G and Zheng Y 2008 Chin. Phys. B 17 2509
[43] Wang S Y, Huang P, Wang T and Zeng G H 2018 New J. Phys. 20 083037
[44] Vasylyev D, Semenov A A and Vogel W 2016 Phys. Rev. Lett. 117 090501
[45] Ghoname S, Fayed H A, El A, Ahmed A and Aly M H 2014 Iran. J. Sci. Technol. Trans. Electr. Eng. 44 119
[46] Vasylyev D, Semenov A A, Vogel W and Günthner K and Thurn A, Bayraktar Ö and Marquardt C 2017 Phys. Rev. A 96 043856
[47] Ali M 2015 IOSR J. Appl. Phys. 7 16
[48] Esmail M A, Fathallah H and Alouini M S 2016 Proceedings of IEEE International Conference on Communications Workshops, May 23-27, 2016, Kuala Lumpur, Malaysia, p. 151
[49] Korolkova N, Leuchs G, Loudon R, Ralph T C and Silberhorn C 2002 Phys. Rev. A 65 052306
[50] Heid M and Lütkenhaus N 2006 Phys. Rev. A 73 052316
[51] Kim I I, Mcarthur B and Korevaar E J Proceedings of SPIE 4214, Optical Wireless Communications III, February 6, 2001, Boston, MA, United States, p. 26
[52] Padhy J B, Satarupa A and Patnaik B 2020 The Effect of Atmosphere on FSO Communication at Two Optical Windows Under Weather Condition of Bhubaneswar City (Singapore: Springer) p. 417
[53] Corless R M, Gonnet G H, Hare D E, Jeffrey D J and Knuth D E 1996 Adv. Comput. Math. 5 329
[1] Stability and performance analysis of a jump linear control system subject to digital upsets
Wang Rui (王蕊), Sun Hui (孙辉), Ma Zhen-Yang (马振洋). Chin. Phys. B, 2015, 24(4): 040201.
No Suggested Reading articles found!