|
|
Tolerance-enhanced SU(1,1) interferometers using asymmetric gain |
Jian-Dong Zhang(张建东)† and Shuai Wang(王帅) |
School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China |
|
|
Abstract SU(1,1) interferometers play an important role in quantum metrology. Previous studies focus on various inputs and detection strategies with symmetric gain. In this paper, we analyze a modified SU(1,1) interferometer using asymmetric gain. Two vacuum states are used as the input and on-off detection is performed at the output. In a lossless scenario, symmetric gain is the optimal selection and the corresponding phase sensitivity can achieve the Heisenberg limit as well as the quantum Cramer-Rao bound. In addition, we analyze the phase sensitivity with symmetric gain in the lossy scenario. The phase sensitivity is sensitive to internal losses but extremely robust against external losses. We address the optimal asymmetric gain and the results suggest that this method can improve the tolerance to internal losses. Our work may contribute to the practical development of quantum metrology.
|
Received: 09 August 2022
Revised: 20 September 2022
Accepted manuscript online: 07 October 2022
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
42.50.St
|
(Nonclassical interferometry, subwavelength lithography)
|
|
Fund: Project supported by Leading Innovative Talents in Changzhou (Grant No. CQ20210107), Shuangchuang Ph.D Award (Grant No. JSSCBS20210915), Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 21KJB140007), and the National Natural Science Foundation of China (Grant No. 12104193). |
Corresponding Authors:
Jian-Dong Zhang
E-mail: zhangjiandong1993@gmail.com
|
Cite this article:
Jian-Dong Zhang(张建东) and Shuai Wang(王帅) Tolerance-enhanced SU(1,1) interferometers using asymmetric gain 2023 Chin. Phys. B 32 010306
|
[1] Taylor M A and Bowen W P 2016 Phys. Reports 615 1 [2] Wu C, Fu H Y, Qureshi K K, Guan B O and Tam H Y 2011 Opt. Lett. 36 412 [3] Lu P, Men L, Sooley K and Chen Q 2009 Appl. Phys. Lett. 94 131110 [4] Yeh Y L 2008 Opt. Lasers Eng. 46 666 [5] Costa G K B, Gouvea P M P, Soares L M B, Pereira J M B, Favero F, Braga A M B, Palffy-Muhoray P, Bruno A C and Carvalho I C S 2016 Opt. Express 24 14690 [6] Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033 [7] Jing J, Liu C, Zhou Z, Ou Z Y and Zhang W 2011 Appl. Phys. Lett. 99 011110 [8] Plick W N, Dowling J P and Agarwal G S 2010 New J. Phys. 12 083014 [9] Marino A M, Corzo Trejo N V and Lett P D 2012 Phys. Rev. A 86 023844 [10] Xin J, Lu X M, Li X and Li G 2019 J. Opt. Soc. Am. B 36 2824 [11] Ou Z Y 2012 Phys. Rev. A 85 023815 [12] Li D, Yuan C H, Ou Z Y and Zhang W 2014 New J. Phys. 16 073020 [13] Li D, Gard B T, Gao Y, Yuan C H, Zhang W, Lee H and Dowling J P 2016 Phys. Rev. A 94 063840 [14] Liu C L, Guo L L, Zhang Z M, Yu Y F 2016 Chin. Phys. B 25 104203 [15] Ma X, You C, Adhikari S, Matekole E S, Glasser R T, Lee H and Dowling J P 2018 Opt. Express 26 18492 [16] Guo L L, Yu Y F and Zhang Z M 2018 Opt. Express 26 29099 [17] Adhikari S, Bhusal N, You C, Lee H and Dowling J P 2018 OSA Continuum 1 438 [18] Du W, Jia J, Chen J F, Ou Z Y and Zhang W 2018 Opt. Lett. 43 1051 [19] Kong J, Jing J, Wang H, Hudelist F, Liu C and Zhang W 2013 Appl. Phys. Lett. 102 011130 [20] Hudelist F, Kong J, Liu C, Jing J, Ou Z and Zhang W 2014 Nat. Commun. 5 3049 [21] Liu S, Lou Y, Xin J and Jing J 2018 Phys. Rev. Appl. 10 064046 [22] Szigeti S S, Lewis-Swan R J and Haine S A 2017 Phys. Rev. Lett. 118 150401 [23] Anderson B E, Gupta P, Schmittberger B L, Horrom T, Hermann Avigliano C, Jones K M and Lett P D 2017 Optica 4 752 [24] Anderson B E, Schmittberger B L, Gupta P, Jones K M and Lett P D 2017 Phys. Rev. A 95 063843 [25] Gupta P, Schmittberger B L, Anderson B E, Jones K M and Lett P D 2018 Opt. Express 26 391 [26] Manceau M, Leuchs G, Khalili K and Chekhova M 2017 Phys. Rev. Lett. 119 223604 [27] Liu J, Wang Y, Zhang M, Wang J, Wei D and Gao H 2020 Opt. Express 28 39443 [28] Kong J, Ou Z Y and Zhang W P 2013 Phys. Rev. A 87 023825 [29] Zhang J D, Jin C F, Zhang Z J, Cen L Z, Hu J Y and Zhao Y 2018 Opt. Express 26 33080 [30] Zhang J D, You C, Li C and Wang S 2021 Phys. Rev. A 103 032617 [31] Du W, Kong J, Bao G, Yang P, Jia J, Ming S, Yuan C, Chen J F, Ou Z Y, Mitchell M W and Zhang W 2022 Phys. Rev. Lett. 128 033601 [32] Ou Z Y and Li X 2020 APL Photonics 5 080902 [33] Gong Q K, Li D, Yuan C H, Qu Z Y and Zhang W P 2017 Chin. Phys. B 26 094205 [34] Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621 [35] Takeoka M, Jin R B and Sasaki M 2015 New J. Phys. 17 043030 [36] Meng X, Wang J, Liang B and Han C 2018 Front. Phys. 13 130322 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|