Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 010307    DOI: 10.1088/1674-1056/aca7f3
RAPID COMMUNICATION Prev   Next  

Variational quantum simulation of thermal statistical states on a superconducting quantum processer

Xue-Yi Guo(郭学仪)1, Shang-Shu Li(李尚书)1,2, Xiao Xiao(效骁)3, Zhong-Cheng Xiang(相忠诚)1, Zi-Yong Ge(葛自勇)1,2, He-Kang Li(李贺康)1,2, Peng-Tao Song(宋鹏涛)1,2, Yi Peng(彭益)1,2, Zhan Wang(王战)1,2, Kai Xu(许凯)1,4, Pan Zhang(张潘)5,6,7,†, Lei Wang(王磊)1,8,‡, Dong-Ning Zheng(郑东宁)1,2,4,8,§, and Heng Fan(范桁)1,2,4,9,¶
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;
4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China;
5 Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China;
6 School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
7 International Centre for Theoretical Physics Asia-Pacific, Beijing/Hangzhou, China;
8 Songshan Lake Materials Laboratory, Dongguan 523808, China;
9 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  Quantum computers promise to solve finite-temperature properties of quantum many-body systems, which is generally challenging for classical computers due to high computational complexities. Here, we report experimental preparations of Gibbs states and excited states of Heisenberg $XX$ and $XXZ$ models by using a 5-qubit programmable superconducting processor. In the experiments, we apply a hybrid quantum-classical algorithm to generate finite temperature states with classical probability models and variational quantum circuits. We reveal that the Hamiltonians can be fully diagonalized with optimized quantum circuits, which enable us to prepare excited states at arbitrary energy density. We demonstrate that the approach has a self-verifying feature and can estimate fundamental thermal observables with a small statistical error. Based on numerical results, we further show that the time complexity of our approach scales polynomially in the number of qubits, revealing its potential in solving large-scale problems.
Keywords:  superconducting qubit      quantum simulation      variational quantum algorithm      quantum statistical mechanics      machine learning  
Received:  27 November 2022      Revised:  01 December 2022      Accepted manuscript online:  02 December 2022
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  05.30.-d (Quantum statistical mechanics)  
Fund: We thank Zhengan Wang, Ruizhen Huang and Tao Xiang for useful discussions. Project supported by the State Key Development Program for Basic Research of China (Grant No. 2017YFA0304300), the National Natural Science Foundation of China (Grant Nos. 11934018, 11747601, and 11975294), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), Scientific Instrument Developing Project of Chinese Academy of Sciences (Grant No. YJKYYQ20200041), Beijing Natural Science Foundation (Grant No. Z200009), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0303030001), and Chinese Academy of Sciences (Grant No. QYZDB-SSW-SYS032).
Corresponding Authors:  Pan Zhang, Lei Wang, Dong-Ning Zheng, Heng Fan     E-mail:  panzhang@itp.ac.cn;wanglei@iphy.ac.cn;dzheng@iphy.ac.cn;hfan@iphy.ac.cn

Cite this article: 

Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁) Variational quantum simulation of thermal statistical states on a superconducting quantum processer 2023 Chin. Phys. B 32 010307

[1] Cerezo M, Arrasmith A, Babbush R, Benjamin S C, Endo S, Fujii K, McClean J R, Mitarai K, Yuan X, Cincio L and Coles P J 2021 Nat. Rev. Phys. 3 625
[2] Preskill J 2018 Quantum 2 79
[3] Moll N, Barkoutsos P, Bishop L S, Chow J M, Cross A, Egger D J, Filipp S, Fuhrer A, Gambetta J M, Ganzhorn M, Kandala A, Mezzacapo A, Müller P, Riess W, Salis G, Smolin J, Tavernelli I and Temme K 2018 Quantum Sci. Technol. 3 030503
[4] Lau J W Z, Lim K H, Shrotriya H and Kwek L C 2022 AAPPS Bull. 32 27
[5] Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou X Q, Love P J, Aspuru-Guzik A and O'Brien J L 2014 Nat. Commun. 5 4213
[6] Colless J I, Ramasesh V V, Dahlen D, Blok M S, Kimchi-Schwartz M E, McClean J R, Carter J, de Jong W A and Siddiqi I 2018 Phys. Rev. X 8 011021
[7] Google AI Quantum and Collaborators 2020 Science 369 1084
[8] Hempel C, Maier C, Romero J, McClean J, Monz T, Shen H, Jurcevic P, Lanyon B P, Love P, Babbush R, Aspuru-Guzik A, Blatt R and Roos C F 2018 Phys. Rev. X 8 031022
[9] Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M and Gambetta J M 2017 Nature 549 242
[10] O'Malley P J J, Babbush R, Kivlichan I D, et al. 2016 Phys. Rev. X 6 031007
[11] Kokail C, Maier C, van Bijnen R, Brydges T, Joshi M K, Jurcevic P, Muschik C A, Silvi P, Blatt R, Roos C F and Zoller P 2019 Nature 569 355
[12] Wei S, Li H and Long G 2020 Research 2020
[13] Farhi E, Goldstone J and Gutmann S A 2014 arXiv: 1411.4028
[14] Zhou L, Wang S T, Choi S, Pichler H and Lukin M D 2020 Phys. Rev. X 10 021067
[15] McArdle S, Jones T, Endo S, Li Y, Benjamin S C and Yuan X 2019 npj Quantum Information 5 75
[16] Endo S, Sun J, Li Y, Benjamin S C and Yuan X 2020 Phys. Rev. Lett. 125 010501
[17] Deutsch J M 1991 Phys. Rev. A 43 2046
[18] Srednicki M 1994 Phys. Rev. E 50 888
[19] Abanin D A, Altman E, Bloch I and Serbyn M 2019 Rev. Mod. Phys. 91 021001
[20] Guo Q, Cheng C, Sun Z H, et al. 2021 Nat. Phys. 17 234
[21] Serbyn M, Abanin D A and Papić Z 2021 Nat. Phys. 17 675
[22] Terhal B M and DiVincenzo D P 2000 Phys. Rev. A 61 022301
[23] Poulin D and Wocjan P 2009 Phys. Rev. Lett. 103 220502
[24] Temme K, Osborne T J, Vollbrecht K G, Poulin D and Verstraete F 2011 Nature 471 87
[25] Brandão F G S L and Kastoryano M J 2019 Commun. Math. Phys. 365 1
[26] Wu J and Hsieh T H 2019 Phys. Rev. Lett. 123 220502
[27] Zhu D, Johri S, Linke N M, Landsman K A, Alderete C H, Nguyen N H, Matsuura A Y, Hsieh T H and Monroe C 2020 Proc. Natl. Acad. Sci. USA 117 25402
[28] Sagastizabal R, Premaratne S P, Klaver B A, Rol M A, Negîrneac V, Moreira M S, Zou X, Johri S, Muthusubramanian N, Beekman M, Zachariadis C, Ostroukh V P, Haider N, Bruno A, Matsuura A Y and DiCarlo L 2021 npj Quantum Inf 7 1
[29] Wang Y, Li G and Wang X 2021 Phys. Rev. Applied 16 054035
[30] Motta M, Sun C, Tan A T K, O'Rourke M J, Ye E, Minnich A J, Brandão F G S L and Chan G K L 2020 Nat. Phys. 16 205
[31] Sun S N, Motta M, Tazhigulov R N, Tan A T K, Chan G K L and Minnich A J 2021 PRX Quantum 2 010317
[32] Verdon G, Marks J, Nanda S, Leichenauer S and Hidary J 2019 arXiv: 1910.02071
[33] Liu J G, Mao L, Zhang P and Wang L 2021 Mach. Learn.: Sci. Technol. 2 025011
[34] Santagati R, Wang J, Gentile A A, Paesani S, Wiebe N, McClean J R, Morley-Short S, Shadbolt P J, Bonneau D, Silverstone J W, Tew D P, Zhou X, O'Brien J L and Thompson M G 2018 Sci. Adv. 4 eaap9646
[35] Higgott O, Wang D and Brierley S 2019 Quantum 3 156
[36] Jones T, Endo S, McArdle S, Yuan X and Benjamin S C 2019 Phys. Rev. A 99 062304
[37] Nakanishi K M, Mitarai K and Fujii K 2019 Phys. Rev. Research 1 033062
[38] Wen J, Lv D, Yung M H and Long G L 2021 Quantum Eng. 3 e80
[39] Martyn J and Swingle B 2019 Phys. Rev. A 100 032107
[40] Huber A 1968 Mathematical Methods in Solid State and Superfluid Theory pp. 364-92
[41] Zhu D, Linke N M, Benedetti M, Landsman K A, Nguyen N H, Alderete C H, Perdomo-Ortiz A, Korda N, Garfoot A, Brecque C, Egan L, Perdomo O and Monroe C 2019 Sci. Adv. 5 eaaw9918
[42] Williams R J 1992 Mach Learn 8 229
[43] Goodfellow I, Bengio Y and Courville A 2016 Deep Learning
[44] Mnih A and Gregor K 2014 arXiv: 1402.0030
[45] Wu D, Wang L and Zhang P 2019 Phys. Rev. Lett. 122 080602
[46] Guo X Y, Ge Z Y, Li H, Wang Z, Zhang Y R, Song P, Xiang Z, Song X, Jin Y, Lu L, Xu K, Zheng D and Fan H 2021 npj Quantum Information 7 51
[47] Lucero E, Kelly J, Bialczak R C, Lenander M, Mariantoni M, Neeley M, O'Connell A D, Sank D, Wang H, Weides M, Wenner J, Yamamoto T, Cleland A N and Martinis J M 2010 Phys. Rev. A 82 042339
[48] Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N and Martinis J M 2013 Phys. Rev. Lett. 111 080502
[49] Herrmann J, Lacroix N, Andersen C K, Remm A, Lazar S, Besse J C, Walter T, Wallraff A, Eichler C and Collodo M C 2020 Phys. Rev. Lett. 125 240502
[50] Bishop C M 2006 Pattern Recognition and Machine Learning (New York: Springer Science)
[51] Schuld M, Bergholm V, Gogolin C, Izaac J and Killoran N 2019 Phys. Rev. A 99 032331
[52] Spall J C 2000 IEEE Trans. Automat. Contr. 45 1839
[53] Kingma D P and Ba J 2017 arXiv: 1412.6980
[54] Harrow A W and Napp J C 2021 Phys. Rev. Lett. 126 140502
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[5] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[6] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[9] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[10] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[11] Quantum simulation of τ-anti-pseudo-Hermitian two-level systems
Chao Zheng(郑超). Chin. Phys. B, 2022, 31(10): 100301.
[12] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[13] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[14] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[15] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
No Suggested Reading articles found!