Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 030305    DOI: 10.1088/1674-1056/acac18
GENERAL Prev   Next  

Non-Markovianity of an atom in a semi-infinite rectangular waveguide

Jing Zeng(曾静)1, Yaju Song(宋亚菊)2, Jing Lu(卢竞)1, and Lan Zhou(周兰)1,†
1 Key Laboratory of Low-Dimensional Quantum Structures and and Quantum Control of the Ministry of Education, Department of Physics and Synergetic Innovation Center of Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, China;
2 College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
Abstract  We investigate the non-Markovianity (NM) of a waveguide QED with a two-level atom as the system and a semi-infinite rectangular waveguide as the environment, where the transverse magnetic (TM$_{mn}$) modes define the quantum channels of guided photons. The perfect mirror imposed by the finite end exerts a retarded feedback mechanism to allow for information backflow, which leads to NM dynamics. For the energy separation of the atom far away from the cutoff frequencies of transverse modes, the delay differential equations are obtained with single-excitation initial in the atom. Our attention is focused on the effects of multiple quantum channels involved in guiding photons on the degree of non-Markovian behavior. An asymptotic value of the non-Markovianity $\mathcal{N}_{1}$ can be found as the atom-mirror distance is large enough, however, the asymptotic value of $\mathcal{N}_{2}$ of the atom interacting with the effective double-modes is lower than that of the atom interacting with the effective single-mode. We also show that $\mathcal{N}_{1}$ is a constant, and the analytical expression for $\mathcal{N}_{2}$ is related to the parameters associated with the modes, which is related to the interference of the two modes.
Keywords:  open system      non-Markovianity      waveguide QED      quantum information  
Received:  01 November 2022      Revised:  11 December 2022      Accepted manuscript online:  16 December 2022
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  42.50.-p (Quantum optics)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11935006, 12075082, 12205088, and 11975095), the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2020RC4047), the Scientific Research Fund of the Hunan Provincial Education Department (Grant No. 21B0639), and Hunan Normal University Open Foundation of Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of the Ministry of Education (Grant No. QSQC2009).
Corresponding Authors:  Lan Zhou     E-mail:

Cite this article: 

Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰) Non-Markovianity of an atom in a semi-infinite rectangular waveguide 2023 Chin. Phys. B 32 030305

[1] Shen J T and Fan S 2005 Opt. Lett. 30 2001
[2] Shen J T and Fan S 2005 Phys. Rev. Lett. 95 213001
[3] Kimble H J 2008 Nature 453 1023
[4] Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J and Kimble H J 2008 Science 319 1062
[5] Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501
[6] Roy D, Wilson C M and Firstenberg O 2017 Rev. Mod. Phys. 89 021001
[7] Hoi I C, Wilson C M, Johansson G, Palomaki T, Peropadre B and Delsing P 2011 Phys. Rev. Lett. 107 073601
[8] Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett. 111 103604
[9] Tiecke T G, Thompson J D, Leon N P, Liu L R, Vuletić V and Lukin M D 2014 Nature 508 241
[10] Shomroni I, Rosenblum S, Lovsky Y, Bechler O, Guendelman G and Dayan B 2014 Science 345 903
[11] García-Álvarez L, Casanova J, Mezzacapo A, Egusquiza I L, Lamata L, Romero G and Solano E 2015 Phys. Rev. Lett. 114 070502
[12] Bajcsy M, Hofferberth S, Balic V, Peyronel T, Hafezi M, Zibrov A S, Vuletic V and Lukin M D 2009 Phys. Rev. Lett. 102 203902
[13] Babinec T M, Hausmann B J, Khan M, Zhang Y, Maze J R, Hemmer P R and Lončar M 2010 Nat. Nanotechnology 5 195
[14] Arcari M, Söllner I, Javadi A, Lindskov Hansen S, Mahmoodian S, Liu J, Thyrrestrup H, Lee E H, Song J D, Stobbe S and Lodahl P 2014 Phys. Rev. Lett. 113 093603
[15] Lund-Hansen T, Stobbe S, Julsgaard B, Thyrrestrup H, Sünner T, Kamp M, Forchel A and Lodahl P 2008 Phys. Rev. Lett. 101 113903
[16] Laucht A, Pütz S, Günthner T, Hauke N, Saive R, Frédérick S, Bichler M, Amann M C, Holleitner A W, Kaniber M and Finley J J 2012 Phys. Rev. X 2 011014
[17] Goban A, Hung C L, Yu S P, Hood J D, Muniz J A, Lee J H, Martin M J, McClung A C, Choi K S, Chang D E, Painter O and Kimble H J 2014 Nat. Commun. 5 3808
[18] Huck A and Andersen U L 2016 Nanophotonics 5 483
[19] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
[20] Akselrod G M, Argyropoulos C, Hoang T B, Cirací C, Fang C, Huang J, David R S and Mikkelsen M H 2014 Nat. Photon. 8 835
[21] Astafiev O, Zagoskin A M, Abdumalikov A A, Pashkin Y A, Yamamoto T, Inomata K, Nakamura Y and Tsai J S 2010 Science 327 840
[22] Astafiev O V, Abdumalikov A A, Zagoskin A M, Pashkin Y A, Nakamura Y and Tsai J S 2010 Phys. Rev. Lett. 104 183603
[23] Abdumalikov A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y and Tsai J S 2010 Phys. Rev. Lett. 104 193601
[24] Hoi I C, Palomaki T, Lindkvist J, Johansson G, Delsing P and Wilson C M 2012 Phys. Rev. Lett. 108 263601
[25] Hoi I C, Kockum A F, Palomaki T, Stace T M, Fan B, Tornberg L, Sathyamoorthy S R, Johansson G, Delsing P and Wilson C M 2013 Phys. Rev. Lett. 111 053601
[26] Hoi I C, Wilson C M, Johansson G, Lindkvist J, Peropadre B, Palomaki T and Delsing P 2013 New. J. Phys. 15 025011
[27] Van Loo A F, Fedorov A, Lalumiére K, Sanders B C, Blais A and Wallraff A 2013 Science 342 1494
[28] Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 718 1
[29] Dirac P A M 1927 Proc. Roy. Soc. A 114 767
[30] Purcell E M Confined Electrons and Photons 839
[31] Kleppner D 1981 Phys. Rev. Lett. 47 233
[32] Meschede D 1992 Phys. Rep. 211 201
[33] Li J G, Zou J and Shao B 2010 Phys. Rev. A 81 062124
[34] Zeng H S, Tang N, Zheng Y P and Wang G Y 2011 Phys. Rev. A 84 032118
[35] Zeng H S, Tang N, Zheng Y P and Xu T T 2012 Eur. Phys. J. D 66 255
[36] Rivas Á, Huelga S F and Plenio M B 2014 Rep. Prog. Phys. 77 094001
[37] Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002
[38] De Vega I and Alonso D 2017 Rev. Mod. Phys. 89 015001
[39] Breuer H P, Laine E M and Piilo J 2009 Rev. Rev. Lett. 103 210401
[40] Laine E M, Piilo J and Breuer H P 2010 Rev. Rev. A 81 062115
[41] Wißmann S, Karlsson A, Laine E M, Piilo J and Breuer H P 2012 Rev. Rev. A 86 062108
[42] Breuer H P 2012 J. Phys. B: At. Mol. Opt. Phys. 45 154001
[43] Ask A and Johansson G 2022 Phys. Rev. Lett. 128 083603
[44] Finsterhölzl R, Katzer M and Carmele A 2020 Phys. Rev. B 102 174309
[45] Fang Y L, Ciccarello F and Baranger H U 2018 New. J. Phys. 20 043035
[46] Tufarelli T, Ciccarello F and Kim M S 2013 Phys. Rev. A 87 013820
[47] Tufarelli T, Kim M S and Ciccarello F 2014 Phys. Rev. A 90 012113
[48] Cook R J and Milonni P W 1987 Phys. Rev. A 35 5081
[49] Dorner U and Zoller P 2002 Phys. Rev. A 66 023816
[50] Huang J F, Shi T, Sun C P and Nori F 2013 Phys. Rev. A 88 013836
[51] Li Q, Zhou L and Sun C P 2014 Phys. Rev. A 89 063810
[52] Hu L J, Lu G Y, Lu J and Zhou L 2020 Quantum Inf. Process. 19 81
[53] Song H X, Sun X Q, Lu J and Zhou L 2018 Commun. Theor. Phys. 69 59
[54] Li J, Hu L J, Lu J and Zhou L 2021 Chin. Phys. B 30 090307
[55] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[1] Genuine Einstein-Podolsky-Rosen steering of generalized three-qubit states via unsharp measurements
Yuyu Chen(陈玉玉), Fenzhuo Guo(郭奋卓), Shihui Wei(魏士慧), and Qiaoyan Wen(温巧燕). Chin. Phys. B, 2023, 32(4): 040309.
[2] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[3] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[4] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[5] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[6] Two-body exceptional points in open dissipative systems
Peize Ding(丁霈泽) and Wei Yi(易为). Chin. Phys. B, 2022, 31(1): 010309.
[7] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[8] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[9] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[10] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[11] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[12] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[13] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[14] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[15] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
No Suggested Reading articles found!