Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020304    DOI: 10.1088/1674-1056/ac6ee3
GENERAL Prev   Next  

Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology

Haiqiang Ma(马海强)1,†,‡, Yanxin Han(韩雁鑫)1,†,§, Tianqi Dou(窦天琦)2, and Pengyun Li(李鹏云)3
1 School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 China Telecom Research Institute, Beijing 102209, China;
3 China Academy of Electronics and Information Technology, China Electronic Technology Group Corporation, Beijing 100041, China
Abstract  Quantum key distribution (QKD) generates information-theoretical secure keys between two parties based on the physical laws of quantum mechanics. The phase-matching (PM) QKD protocol allows the key rate to break the quantum channel secret key capacity limit without quantum repeaters, and the security of the protocol is demonstrated by using equivalent entanglement. In this paper, the wavelength division multiplexing (WDM) technique is applied to the PM-QKD protocol considering the effect of crosstalk noise on the secret key rate. The performance of PM-QKD protocol based on WDM with the influence of adjacent classical channels and Raman scattering is analyzed by numerical simulations to maximize the total secret key rate of the QKD, providing a reference for future implementations of QKD based on WDM techniques.
Keywords:  quantum key distribution      wavelength division multiplexing      secret key rate  
Received:  09 March 2022      Revised:  23 April 2022      Accepted manuscript online:  12 May 2022
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: Project supported by the State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (Grant No. IPOC2021ZT10), the National Natural Science Foundation of China (Grant No. 11904333), the Fundamental Research Funds for the Central Universities (Grant No. 2019XDA02), and BUPT Innovation and Entrepreneurship Support Program (Grant No. 2022-YC-T051).
Corresponding Authors:  Haiqiang Ma, Yanxin Han     E-mail:  hqma@bupt.edu.cn;hyxin@bupt.edu.cn

Cite this article: 

Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云) Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology 2023 Chin. Phys. B 32 020304

[1] Lo H K, Curty M and Tamaki K 2014 Nat. Photon. 8 595
[2] Bennett C H and Brassard G 1984 Processings of the IEEE International Conference on Computers, Systems and Signal Processing, 1999, Banglore, India (IEEE, New York, 1984) p. 175
[3] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys 74 145
[4] Lütkenhaus N and Shields A J 2009 New J. Phys. 11 045005
[5] Grünenfelder F, Boaron A, Rusca D, Martin A and Zbinden H 2018 Appl. Phys. Lett. 112 051108
[6] Gan Y H, Wang Y, Bao W S, He R S, Zhou C and Jiang M S 2019 Chin. Phys. Lett. 36 040301
[7] Liao S K, Lin J, Ren J G, Liu W Y, et al. 2017 Chin. Phys. Lett. 34 090302
[8] Tang G Z, Sun S H and Li C Y 2019 Chin. Phys. Lett. 36 070301
[9] Mao Y, Liu Q, Guo Y, Zhang H and Zhou J 2019 Chin. Phys. Lett. 36 100302
[10] Zhao Y B, Zhang W L, Wang D, Song X T, Zhou L J and Ding C B 2019 Chin. Phys. B 28 104203
[11] Li J J, Wang Y, Li H W and Bao S W 2020 Chin. Phys. B 29 030303
[12] Li X, Yuan H W, Zhang C M and Wang Q 2020 Chin. Phys. B 29 070303
[13] Tang G Z, Sun S H, Chen H, Li C Y and Liang L M 2016 Chin. Phys. Lett. 33 120301
[14] Zhang C M, Zhu J R and Wang Q 2018 Commun. Theor. Phys. 70 379
[15] Tang Z, Wei K, Bedroya O, Qian L and Lo H K 2016 Phys. Rev. A 93 042308
[16] Wang X B 2005 Phys. Rev. Lett. 94 230503
[17] Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[18] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[19] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 15043
[20] Lucamarini M, Yuan Z, Dynes J and Shields A 2018 Nature 557 400
[21] Ma X, Zeng P and Zhou H 2018 Phys. Rev. X 8 031043
[22] Wang X B, Yu Z W and Hu X L 2018 Phys. Rev. A 98 062323
[23] Cui C, Yin Z Q, Wang R, Chen W, Wang S, Guo G C and Han Z F 2019 Phys. Rev. Appl. 11 034053
[24] Fernandez V, Collins R J, Gordon K J, Townsend P D and Buller G S 2009 IEEE J. Quantum Electron. 43 130
[25] Qi B, Zhu W, Qian L and Lo H K 2010 New J. Phys. 12 103042
[26] He R S, Jiang M S, Wang Y, Gan Y H, Zhou C and Bao W S 2019 Chin. Phys. B 28 040303
[27] Townsend P 1997 Electron. Lett. 33 188
[28] Nweke N I 2005 Appl. Phys. Lett. 87 174103
[29] Patel K A, Dynes J F, Lucamarini M and Choi I, Sharpe A W, Yuan Z L, Penty R V and Shields A J 2014 Appl. Phys. Lett. 104 051123
[30] Sun W, Wang L J, Sun X X, Mao Y Q, Yin H L, Wang B X, Chen T Y and Pan K W 2018 J. Appl. Phys. 123 043105
[31] Sun Z Q, Han Y X, Dou T Q, Wang J P, Li Z H, Zhou F, Huang Y Q and Ma H Q 2021 Chin. Phys. B 30 110303
[32] Patel K A, Dynes J F, Choi I, Sharpe A W, Dixon A R, Yuan Z L, Penty R V and Shields A J 2012 Phys. Rev. X 2 041010
[33] Huang D, Lin D, Wang C, Liu W Q, Fang S H, Peng J Y and Zeng G H 2015 Opt. Express 23 17511
[34] Bahrani S, Razavi M and Salehi J A 2018 Sci. Rep. 8 3456
[35] Bahrani S, Razavi M and Salehi J A 2016 24th European Signal Processing Conference (EUSIPCO) AUG 28-SEP 02, 2016, Budapest, Hungary, pp. 483-487
[36] Eraerds P, Walenta N, Legré M, Gisin N and Zbinden H 2010 New J. Phys. 12 063027
[37] Du S, Tian Y and Li Y 2020 Phys. Rev. Appl. 14 024013
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[3] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[4] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[5] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[8] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[9] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[10] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[11] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[12] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[13] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[14] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
[15] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
No Suggested Reading articles found!