Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 010303    DOI: 10.1088/1674-1056/ac6497
GENERAL Prev   Next  

Improving the teleportation of quantum Fisher information under non-Markovian environment

Yan-Ling Li(李艳玲)1,†, Yi-Bo Zeng(曾艺博)1, Lin Yao(姚林)1, and Xing Xiao(肖兴)2,‡
1 School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
2 College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China
Abstract  Quantum teleportation is designed to send an unknown quantum state between two parties. In the perspective of remote quantum metrology, one may be interested in teleporting the information that is encoded by physical parameters synthesized by quantum Fisher information (QFI). However, the teleported QFI is often destroyed by the unavoidable interaction between the system and the environment. Here, we propose two schemes to improve the teleportation of QFI in the non-Markovian environment. One is to control the quantum system through the operations of weak measurement (WM) and corresponding quantum measurement reversal (QMR). The other is to modify the quantum system based on the monitoring result of the environment (i.e., environment-assisted measurement, EAM). It is found that, in the non-Markovian environment, these two schemes can improve the teleportation of QFI. By selecting the appropriate strengths of WM and QMR, the environment noise can be completely eliminated and the initial QFI is perfectly teleported. A comprehensive comparison shows that the second scheme not only has a higher probability of success than the first one, but also has a significant improvement of the teleported QFI.
Keywords:  weak measurement      environment-assisted measurement      teleportation of quantum Fisher information  
Received:  09 February 2022      Revised:  28 March 2022      Accepted manuscript online:  06 April 2022
PACS:  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61765007 and 12265004), Jiangxi Provincial Natural Science Foundation, China (Grant No. 20212ACB211004), and Innovation Foundation of Jiangxi University of Science and Technology (Grant No. XY2021-S088).
Corresponding Authors:  Yan-Ling Li, Xing Xiao     E-mail:;

Cite this article: 

Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴) Improving the teleportation of quantum Fisher information under non-Markovian environment 2023 Chin. Phys. B 32 010303

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Horodecki M, Horodecki P and Horodecki R 1999 Phys. Rev. A 60 1888
[3] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[4] Lu X M, Wang X and Sun C P 2010 Phys. Rev. A 82 042103
[5] Song H, Luo S, Li N and Chang L 2013 Phys. Rev. A 88 042121
[6] Yao Y, Ge L, Xiao X, Wang X G and Sun C P 2014 Phys. Rev. A 90 022327
[7] Xiao X, Yao Y, Zhou L M and Wang X G 2014 Sci. Rep. 41 07361
[8] Xiao X, Yao Y, Zhong W J, Li Y L and Xie Y M 2016 Phys. Rev. A 93 012307
[9] Jin Y 2017 Sci. Rep. 7 40193
[10] Jafarzadeh M, Jahromi H R and Amniat-Talab M 2018 Quantum Inf. Process. 17 165
[11] Kolodyński J and Demkowicz-Dobrzański R 2010 Phys. Rev. A 82 053804
[12] Ma J, Huang Y X, Wang X G and Sun C P 2011 Phys. Rev. A 84 022302
[13] Berrada K, Abdel-Khalek S and Obada A S F 2012 Phys. Lett. A 376 1412
[14] Zhang Y M, Li X W, Yang W and Jin G R 2013 Phys. Rev. A 88 043832
[15] Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002
[16] Li C F, Guo G C and Piilo J 2019 Europhy. Lett. 127 50001
[17] Xu X and Fang M F 2020 Chin. Phys. B 29 040306
[18] Man Z X and Xia Y J 2012 Quantum In. Process. 11 1911
[19] Hao X and Zhu S 2012 Int. J. Quantum inf. 10 1250051
[20] Ofek N, Petrenko A, Heeres R, Reinhold P, Leghtas Z, Vlastakis B, Liu Y, Frunzio L, Girvin S M, Jiang L, Mirrahimi M, Devoret M H and Schoelkopf R J 2016 Nature 536 441
[21] Viola L, Knill E and Lloyd S 1999 Phys. Rev. Lett. 82 2417
[22] Korotkov A N 1999 Phys. Rev. B 60 5737
[23] Korotkov A N and Jordan A N 2006 Phys. Rev. Lett. 97 166805
[24] Sun Q, Al-Amri M and Zubairy M S 2009 Phys. Rev. A 80 033838
[25] Xiao X and Feng M 2011 Phys. Rev. A 83 054301
[26] Sun Q, Al-Amri M, Davidovich L and Zubairy M S 2010 Phys. Rev. A 82 052323
[27] Li Y L and Xiao X 2013 Quantum Inf. Process. 12 3067
[28] Wang M J, Xia Y J, Yang Y, Cao L Z, Zhang Q W and Zhao J Q 2020 Chin. Phys. B 29 110307
[29] Du S J, Peng Y G, Feng H R, Han F, Yang L W and Zheng Y J 2020 Chin. Phys. B 29 074202
[30] Jebli L, Amzioug M, Ennadifi S E, Habiballah N and Nassik M 2020 Chin. Phys. B 29 110301
[31] Xiao X and Li Y L 2013 Eur. Phys. J. D 67 204
[32] He Z, Yao C M and Zou J 2013 Phys. Rev. A 88 044304
[33] Li Y L, Zu C J and Wei D M 2012 Nat. Phys. 8 117
[37] Kim Y S, Cho Y W, Ra Y S and Kim Y H 2009 Opt. Express 17 11978
[38] Katz N, Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E and Korotkov A N 2008 Phys. Rev. Lett. 101 200401
[39] Korotkov A N and Jordan A N 2006 Phys. Rev. Lett. 97 166805
[40] Wu H J, Jin Z and Zhu A D 2018 Int. J. Theor. Phys. 57 1235
[41] Wang K, Zhao X and Yu T 2014 Phys. Rev. A 89 042320
[42] Guo Y N, Peng H P, Yang C, Xie Q and Zeng K 2019 Laser Phys. Lett. 16 125202
[43] Guo Y N, Zeng K and Chen P X 2019 Laser Phys. Lett. 16 095203
[44] Haseli S, Karpat G, Salimi S, Khorashad A S, Fanchini F F, Cakmak B and Ribeiro P S 2014 Phys. Rev. A 90 052118
[45] Zhong W, Sun Z, Ma J, Wang X G and Nori F 2013 Phys. Rev. A 87 022337
[1] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[2] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[3] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[4] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[5] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[6] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[7] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[8] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[9] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik$. Chin. Phys. B, 2020, 29(11): 110301.
[10] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[11] Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏). Chin. Phys. B, 2016, 25(8): 080310.
[12] Weak value amplification via second-order correlated technique
Ting Cui(崔挺), Jing-Zheng Huang(黄靖正), Xiang Liu(刘翔), Gui-Hua Zeng(曾贵华). Chin. Phys. B, 2016, 25(2): 020301.
[13] Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal
Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2016, 25(11): 110303.
[14] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰), Duan De-Yang (段德洋), Zhang Lu (张路), Gao Qiang (高强). Chin. Phys. B, 2015, 24(4): 044205.
[15] Dynamics of super-quantum discord and direct control with weak measurement in open quantum system
Ji Ying-Hua (嵇英华). Chin. Phys. B, 2015, 24(12): 120302.
No Suggested Reading articles found!