|
|
Qubit movement-assisted entanglement swapping |
Sare Golkar1, Mohammad Kazem Tavassoly1,2, Alireza Nourmandipour3 |
1 Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd 89195-741, Iran; 2 Photonic Research Group, Engineering Research Center, Yazd University, Yazd 89195-741, Iran; 3 Department of Physics, Faculty of Science, Sirjan University of Technology, Sirjan, Iran |
|
|
Abstract We propose a scheme to generate entanglement between two distant qubits (two-level atom) which are separately trapped in their own (in general) non-Markovian dissipative cavities by utilizing entangling swapping, considering the case in which the qubits can move along their cavity axes rather than a static state of motion. We first examine the role of movement of the qubit by studying the entropy evolution for each subsystem. The average entropy over the initial states of the qubit is calculated. Then by performing a Bell state measurement on the fields leaving the cavities, we swap the entanglement between qubit-field in each cavity into qubit-qubit and field-field subsystems. The entangling power is used to measure the average amount of swapped entanglement over all possible pure initial states. Our results are presented in two weak and strong coupling regimes, illustrating the positive role of movement of the qubits on the swapped entanglement. It is revealed that by considering certain conditions for the initial state of qubits, it is possible to achieve a maximally long-leaving stationary entanglement (Bell state) which is entirely independent of the environmental variables as well as the velocity of qubits. This happens when the two qubits have the same velocities.
|
Received: 23 January 2020
Revised: 19 February 2020
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Corresponding Authors:
Alireza Nourmandipour
E-mail: anourmandip@sirjantech.ac.ir,anourmandip@gmail.com
|
Cite this article:
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour Qubit movement-assisted entanglement swapping 2020 Chin. Phys. B 29 050304
|
[1] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[2] |
Braunstein S L and Mann A 1995 Phys. Rev. A. 51 R1727(R)
|
[3] |
Zhang S L, Jin C H, Shi J H, Guo J S, Zou X B and Guo G C 2017 Chin. Phys. Lett. 34 040302
|
[4] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[5] |
Richter T and Vogel W 2007 Phys. Rev. A 76 053835
|
[6] |
Murao M, Jonathan D, Plenio M B and Vedral V 1999 Phys. Rev. A 59 156
|
[7] |
Koike S, Takahashi H, Yonezawa H, Takei N, Braunstein S L, Aoki T and Furusawa A 2006 Phys. Rev. Lett. 96 060504
|
[8] |
Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
|
[9] |
Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
|
[10] |
Pazy E, Biolatti E, Calarco T, D Amico I, Zanardi P, Rossi F and Zoller P 2003 Europhys. Lett. 62 175
|
[11] |
Julsgaard B, Kozhekin A and Polzik E S 2001 Nature 413 400
|
[12] |
Yang C P, Chu S I and Han S 2003 Phys. Rev. A 67 042311
|
[13] |
Yang C P, Chu S I and Han S 2004 Phys. Rev. Lett. 92 117902
|
[14] |
Aspect A, Grangier P and Roger G 1981 Phys. Rev. Lett. 47 460
|
[15] |
Izmalkov A, Grajcar M, Il'ichev E, Wagner Th, Meyer H G, Yu A, Amin M H S, van den Brink A M and Zagoskin A M 2004 Phys. Rev. Lett. 93 037003
|
[16] |
Pachos J and Walther H 2002 Phys. Rev. Lett. 89 187903
|
[17] |
Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
|
[18] |
Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D J and Monroe C 2000 Nature 404 256
|
[19] |
Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
|
[20] |
Tavis M and Cummings F W 1968 Phys. Rev. 170 379
|
[21] |
Żukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
|
[22] |
Pakniat R, Tavassoly M K and Zandi M H 2016 Chin. Phys. B 25 100303
|
[23] |
Polkinghorne R E S and Ralph T C 1999 Phys. Rev. Lett. 83 2095
|
[24] |
Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822
|
[25] |
Jia X, Su X, Pan Q, Gao J, Xie C and Peng K 2004 Phys. Rev. Lett. 93 250503
|
[26] |
Hu C Y and Rarity J G 2011 Phys. Rev. B 83 115303
|
[27] |
Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
|
[28] |
de Almeida N G 2015 J. Phys. B: At. Mol. Opt. Phys. 48 115508
|
[29] |
Ghasemi M, Tavassoly M K and Nourmandipour A 2017 Eur. Phys. J. Plus 132 531
|
[30] |
Ning W, Huang X J, Han P R, Li H, Deng H, Yang Z B, Zhong Z R, Xia Y, Xu K, Zheng D and Zheng S B 2019 Phys. Rev. Lett. 123 060502
|
[31] |
Zopf M, Keil R, Chen Y, Yang J, Chen D, Ding F and Schmidt O G 2019 Phys. Rev. Lett. 123 160502
|
[32] |
Yu T and Eberly J H 2003 Phys. Rev. B 68 165322
|
[33] |
Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
|
[34] |
Nourmandipour A and Tavassoly M K 2015 Eur. Phys. J. Plus 130 148
|
[35] |
Mortezapour A, Abedi M, Mahmoudi M and Khajehpour M R H 2011 J. Phys. B: At. Mol. Opt. Phys. 44 085501
|
[36] |
Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys. 8 117
|
[37] |
Rafiee M, Nourmandipour A and Mancini S 2016 Phys. Rev. A 94 012310
|
[38] |
Rafiee M, Nourmandipour A and Mancini S 2017 Phys. Rev. A 96 012340
|
[39] |
Mortezapour A, Naeimi G and Lo Franco R 2018 Opt. Commun. 424 26
|
[40] |
Mortezapour A and Lo Franco R 2018 Sci. Rep. 8 14304
|
[41] |
Zhang D J, Liu C L and Tong D M 2015 Chin. Phys. Lett. 32 40302
|
[42] |
Hu J and Xue Q 2019 Chin. Phys. B 28 070303
|
[43] |
Nourmandipour A and Tavassoly M K 2015 J. Phys. B: At. Mol. Opt. Phys. 48 165502
|
[44] |
Maniscalco S, Francica F, Zaffino R L, Lo Gullo N and Plastina F 2008 Phys. Rev. Lett. 100 090503
|
[45] |
Huang L Y and Fang M F 2010 Chin. Phys. B 19 090318
|
[46] |
Wang X L, Ren Y K and Zeng H S 2019 Chin. Phys. B 28 030301
|
[47] |
Wang M J and Xia Y J 2019 Chin. Phys. B 28 060303
|
[48] |
Nourmandipour A, Tavassoly M K and Rafiee M 2016 Phys. Rev. A 93 022327
|
[49] |
Nourmandipour A, Tavassoly M K and Bolorizadeh M A 2016 J. Opt. Soc. Am. B 33 1723
|
[50] |
Shankar A, Lakshmibala S and Balakrishnan V 2014 J. Phys. B: At. Mol. Opt. Phys. 47 215505
|
[51] |
Schirmer S G and Wang X 2010 Phys. Rev. A 81 062306
|
[52] |
Didier N, Guillaud J, Shankar S and Mirrahimi M 2018 Phys. Rev. A 98 012329
|
[53] |
Xiao X, Fang M F and Li Y L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 185505
|
[54] |
Haikka P and Maniscalco S 2010 Phys. Rev. A 81 052103
|
[55] |
Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2015 Phys. Rev. A 91 032112
|
[56] |
Ren Y K, Tang L M and Zeng H S 2016 Quantum Inf. Process. 15 5011
|
[57] |
Mortezapour A, Borji M A and Lo Franco R 2017 Laser Phys. Lett. 14 055201
|
[58] |
Calajó G and Rabl P 2017 Phys. Rev. A 95 043824
|
[59] |
García-Álvarez L, Felicetti S, Rico E, Solano E and Sabín C 2017 Sci. Rep. 7 657
|
[60] |
Felicetti S, Sabín C, Fuentes I, Lamata L, Romero G and Solano E 2015 Phys. Rev. B 92 064501
|
[61] |
Moustos D and Anastopoulos C 2017 Phys. Rev. D 95 025020
|
[62] |
Golkar S, Tavassoly M K and Nourmandipour A 2020 J. Opt. Soc. Am. B 37 400
|
[63] |
Wootters K 1998 Phys. Rev. Lett. 80 2245
|
[64] |
Zanardi P, Zalka C and Faoro L 2000 Phys. Rev. A 62 030301
|
[65] |
Nourmandipour A, Tavassoly M K and Mancini S 2016 Quantum Inf. Comput. 16 969
|
[66] |
Asbóth J K, Domokos P and Ritsch H 2004 Phys. Rev. A 70 013414
|
[67] |
Katsuki H, Delagnes J C, Hosaka K et al. 2013 Nat. Commun. 4 2801
|
[68] |
Park D 2017 arXiv:1703.09341 [quant-ph]
|
[69] |
Peters N A, Wei T C and Kwiat P G 2004 Phys. Rev. A 70 052309
|
[70] |
Eghbali-Arani M, Yavari H, Shahzamanian M A, Giovannetti V and Barzanjeh S 2015 J. Opt. Soc. Am. B 32 798
|
[71] |
Lee S W and Jeong H 2013 arXiv:1304.1214 [quant-ph]
|
[72] |
Nourmandipour A and Tavassoly M K 2016 Phys. Rev. A 94 022339
|
[73] |
Mortezapour A, Nourmandipour A and Gholipour H 2020 Quantum Inf. Process. 19 136
|
[74] |
Briegel H J, Dür, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|