Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020303    DOI: 10.1088/1674-1056/ac9b2e
GENERAL Prev   Next  

Novel traveling quantum anonymous voting scheme via GHZ states

Wenhao Zhao(赵文浩)1 and Min Jiang(姜敏)1,2,†
1 School of Electronics&Information Engineering, Soochow University, Suzhou 215006, China;
2 Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai 200240, China
Abstract  Based on traveling ballot mode, we propose a secure quantum anonymous voting via Greenberger-Horne-Zeilinger (GHZ) states. In this scheme, each legal voter performs unitary operation on corresponding position of particle sequence to encode his/her voting content. The voters have multiple ballot items to choose rather than just binary options "yes" or "no". After counting votes phase, any participant who is interested in voting results can obtain the voting results. To improve the efficiency of the traveling quantum anonymous voting scheme, an optimization method based on grouping strategy is also presented. Compared with the most existing traveling quantum voting schemes, the proposed scheme is more practical because of its privacy, verifiability and non-repeatability. Furthermore, the security analysis shows that the proposed traveling quantum anonymous voting scheme can prevent various attacks and ensure high security.
Keywords:  quantum anonymous voting      quantum secure communication      GHZ states      verifiability      privacy  
Received:  18 June 2022      Revised:  08 October 2022      Accepted manuscript online:  19 October 2022
PACS:  03.67.-a (Quantum information)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the Tang Scholar Project of Soochow University, the National Natural Science Foundation of China (Grant No. 61873162), the Fund from Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network and Suzhou Key Laboratory of Advanced Optical Communication Network Technology.
Corresponding Authors:  Min Jiang     E-mail:

Cite this article: 

Wenhao Zhao(赵文浩) and Min Jiang(姜敏) Novel traveling quantum anonymous voting scheme via GHZ states 2023 Chin. Phys. B 32 020303

[1] Xin T, Wang B X, Li K R, Kong X Y, Wei S J, Wang T, Ruan D and Long G L 2018 Chin. Phys. B 27 020308
[2] Yang Lu, Liu Y C and Li Y S 2020 Chin. Phys. B 29 060301
[3] Li H J, Li J and Chen X B 2022 Chin. Phys. B 31 090303
[4] Xu Z H, Wei Y Z, Jiang C and Jiang M 2022 Chin. Phys. B 31 040304
[5] Chen N, Yan B, Chen G, Zhang M J and Pei C X 2018 Chin. Phys. B 27 090304
[6] Sun Z, Song L Y, Huang Q, Yin L G, Long G L, Lu J H and Hanzo L 2020 IEEE Trans. Commun. 68 5778
[7] Zhang H, Sun Z, Qi R, Yin L, Long G L and Lu J 2022 Light Sci. Appl. 11 83
[8] Christandl M and Wehner S 2005 Advances in Cryptology-ASIACRYPT 2005 (Berlin: Springer-Verlag) p. 217
[9] Hillery M 2006 Int. Soc. Opt. Eng. 1598 2006
[10] Vaccaro J A, Spring J and Chefles A 2007 Phys. Rev. A 75 012333
[11] Li Y and Zeng G H 2008 Opt. Rev. 15 219
[12] Horoshko D and Kilin S 2011 Phys. Lett. A 375 1172
[13] Xu Q J and Zhang S Y 2010 Sci. China-Phys. Mech. Astron. 53 2131
[14] Li Y and Zeng G H 2012 Opt. Rev. 19 121
[15] Zhang X, Zhang J Z and Xie S C 2020 Int. J. Theor. Phys. 59 719
[16] Shi R H, Xiao Y, Shi J J, Guo Y and Lee M H 2016 Chin. Phys. B 25 060301
[17] Tian J H, Zhang J Z and Li Y P 2016 Int. J. Theor. Phys. 55 2303
[18] Thapliyal K, Sharma R D and Pathak A 2017 Int. J. Quantum Inf. 15 1750007
[19] Zhang J L, Xie S C and Zhang J Z 2017 Int. J. Theor. Phys. 56 3019
[20] Wang Q L, Li Y C, Yu C H and Zhang Z C 2021 Quantum Inf. Process. 20 85
[21] Wang Q L, Liu J S, Li Y C, Y C H and P S J 2021 Quantum Inf. Process. 20 142
[22] Bonanome M, Bužek V, Hillery M and Ziman M 2011 Phys. Rev. A 84 022331
[23] Shi R H, Qin J Q, Liu B and Zhang M 2021 Eur. Phys. J. D 75 20
[24] Li Y R, Jiang D H, Zhang Y H and Liang X Q 2021 Quantum Inf. Process. 20 110
[25] Huang W, Wen Q Y, Liu B, Su Q, Qin S J and Gao F 2014 Phys. Rev. A 89 032325
[26] Lin S, Guo G D, Huang F and Liu X F 2016 Phys. Rev. A 93 012318
[27] Wang Q L, Yu C H, Li Y C, Liu J S, Shi R H and Zhou Y Q 2020 IEEE Commun. Lett. 25 518
[28] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[29] Liu H N, Liang X Q, Jiang D H, Zhang Y H and Xu G B 2019 Int. J. Theor. Phys. 58 1659
[30] Li H H, Gong L H and Zhou N R 2020 Chin. Phys. B 29 110304
[1] Fast implementation of length-adaptive privacy amplification in quantum key distribution
Zhang Chun-Mei (张春梅), Li Mo (李默), Huang Jing-Zheng (黄靖正), Patcharapong Treeviriyanupab, Li Hong-Wei (李宏伟), Li Fang-Yi (李芳毅), Wang Chuan (王川), Yin Zhen-Qiang (银振强), Chen Wei (陈巍), Keattisak Sripimanwat, Han Zhen-Fu (韩正甫). Chin. Phys. B, 2014, 23(9): 090310.
[2] Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise
Chen Zhong-Fang (陈忠芳), Liu Jin-Ming (刘金明), Ma Lei (马雷). Chin. Phys. B, 2014, 23(2): 020312.
[3] Generation of four-particle GHZ states in bimodal cavity QED
Yang Zhen-Biao(杨贞标). Chin. Phys. B, 2007, 16(7): 1963-1970.
[4] Teleportation of atomic entangled states with a thermal cavity
Zheng Xiao-Juan(郑小娟), Fang Mao-Fa(方卯发), Cai Jian-Wu(蔡建武), and Liao Xiang-Ping(廖湘萍). Chin. Phys. B, 2006, 15(12): 2840-2846.
No Suggested Reading articles found!