ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal |
Gang Liu(刘刚)1,2,†, Yuanhang Li(李远航)2,3, Baonan Jia(贾宝楠)2, Yongpan Gao(高永潘)2, Lihong Han(韩利红)2, Pengfei Lu(芦鹏飞)2,3, and Haizhi Song(宋海智)4,‡ |
1 Beijing Key Laboratory of Space-Ground Interconnection and Convergence, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; 3 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; 4 Southwest Institute of Technical Physics, Chengdu 610041, China |
|
|
Abstract Photonic crystal structures have excellent optical properties, so they are widely studied in conventional optical materials. Recent research shows that high-temperature superconducting periodic structures have natural photonic crystal features and they are favourable candidates for single-photon detection. Considering that superconductors have completely different properties from conventional optical materials, we study the energy level diagram and mid-infrared 3 μm-5 μm transmission spectrum of two-dimensional superconducting photonic crystals in both superconducting and quenched states with the finite element method. The energy level diagram of the circular crystal column superconducting structure shows that the structure has a large band gap width in both states. At the same fill factor, the circular crystal column superconducting structure has a larger band gap width than the others structures. For lattice structures, the zero transmission point of the square lattice structure is robust to the incident angle and environmental temperature. Our research has guiding significance for the design of new material photonic crystals, photon modulation and detection.
|
Received: 20 October 2022
Revised: 31 December 2022
Accepted manuscript online: 31 January 2023
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.70.Qs
|
(Photonic bandgap materials)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3601201), the National Natural Science Foundation of China (Grant No. 62101057), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (Grant No. IPOC2021ZT07). |
Corresponding Authors:
Gang Liu, Haizhi Song
E-mail: liu_g@126.com;hzsong1296@163.com
|
Cite this article:
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智) A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal 2023 Chin. Phys. B 32 034213
|
[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059 [2] John S 1987 Phys. Rev. Lett. 58 2486 [3] Cai Y and Dong Y 2019 IOP Conf. Ser.: Mater. Sci. Eng. 473 012024 [4] Joannopoulos J D, Villeneuve P R and Fan S 1997 Nature 386 143 [5] Yablonovitch E 1994 J. Mod. Opt. 41 173 [6] Threm D, Nazirizadeh Y and Gerken M 2012 J. Biophotonics 5 601 [7] Baker J E, Sriram R and Miller B L 2015 Lab Chip 15 971 [8] Rifat A A, Mahdiraji G A and Ahmed R 2015 IEEE Photon. J. 8 4800408 [9] Li L, Li T and Ji F 2017 Microsyst. Technol. 23 3271 [10] Xia J, Qiao Q and Zhou G 2020 Appl. Sci. 10 7080 [11] Choi H Y, Park K S and Park S J 2008 Opt. Lett. 33 2455 [12] Hameed M F O, Azab M Y and Heikal A M 2015 IEEE Photon. Technol. Lett. 28 59 [13] Chu S, Olmedo M and Yang Z 2008 Appl. Phys. Lett. 93 181106 [14] Wu D K C, Kuhlmey B T and Eggleton B J 2009 Opt. Lett. 34 322 [15] Goyal A K, Dutta H S and Pal S 2017 J. Phys. D: Appl. Phys. 50 203001 [16] Xu H, Wu P and Zhu C 2013 J. Mater. Chem. C 1 6087 [17] Schmidt M A, Argyros A and Sorin F 2015 Adv. Opt. Mater. 4 13 [18] Russell P 2003 Science 299 358 [19] Skivesen N, Tetu A and Kristensen M 2007 Opt. Express 15 3169 [20] Bao J, Xiao J and Fan L 2014 Opt. Commun. 329 109 [21] Dutta H S, Goyal A K and Srivastava V 2016 Photon. Nanostruct. 20 41 [22] Song G Z, Munro E and Nie W 2018 Phys. Rev. A 98 023814 [23] Song G Z, Zhang M and Ai Q 2017 Ann. Phys. 378 33 [24] Yang D, Wang C and Ji Y 2016 Opt. Express 24 16267 [25] Costa R, Melloni A and Martinelli M 2003 IEEE Photon. Technol. Lett. 15 401 [26] Mahmoud M Y, Bassou G and Taalbi A 2012 Opt. Commun. 285 368 [27] Rezaee S, Zavvari M and Alipour-Banaei H 2015 Optik 126 2535 [28] Wang T J, Song S Y and Long G L 2012 Phys. Rev. A 85 062311 [29] Ren B C and Long G L 2014 Opt. Express 22 6547 [30] Xu X S, Zhang H and Kong X Y 2020 Photon. Res. 8 490 [31] Münzberg J, Vetter A and Beutel F 2018 Optica 5 658 [32] Vetter A, Ferrari S and Rath P 2016 Nano Lett. 16 7085 [33] Zhang W J, Li H and You L X 2016 IEEE Photon. J. 8 1 [34] Zhang L, Gu M and Jia T 2014 IEEE Photon. J. 6 1 [35] Yang C, Liu H and Liu Y 2022 Nature 601 205 [36] Yang C, Liu Y and Wang Y 2019 Science 366 1505 [37] Pedarnig J D, Bodea M A and Steiger B 2012 Phys. Procedia 36 508 [38] Aly A H, Ghany S E S A and Kamal B M 2020 Ceram. Int. 46 365 [39] Thapa K B, Srivastava S and Tiwari S 2010 J. Supercond. Nov. Magn. 23 517 [40] Berman O L, Lozovik Y E and Eiderman S L 2006 Phys. Rev. B 74 092505 [41] Qiu D, Gong C and Wang S S 2021 Adv. Mater. 33 2006124 [42] Ooi C H R, Yeung T C A and Kam C H 2000 Phys. Rev. B 61 5920 [43] Aly A H and Mohamed D 2015 J. Supercond. Nov. Magn. 28 1699 [44] Lin W H, Wu C J and Yang T J 2010 Opt. Express 18 27155 [45] Kumar A R, Zhang Z M and Boychev V A 1999 J. Heat Transfer 121 844 [46] Rifat A A, Mahdiraji G A and Chow D M 2015 Sensors 15 11499 [47] Fietz C, Urzhumov Y and Shvets G 2011 Opt. Express 19 19027 [48] Hiett B P, Generowicz J M and Cox S J 2002 IEE Proc. Sci. Meas. Technol. 149 293 [49] Boffi D, Conforti M and Gastaldi L 2006 Numer. Math. 105 249 [50] Yang D, Gao F and Cao Q T 2018 Photon. Res. 6 99 [51] Qi Y P, Wang L Y and Zhang Y 2020 Chin. Phys. B 29 067303 [52] Meng J, Hou L T and Zhou G Y 2008 Chin. Phys. B 17 3779 [53] Hao K S, Huang S L and Zhao W 2011 Chin. Phys. B 20 068104 [54] El-Naggar S A, Elsayed H A and Aly A H 2014 J. Supercond. Nov. Magn. 27 1615 [55] Aly A H 2009 Chem. Phys. 115 391 [56] Axmann W and Kuchment P 1999 J. Comput. Phys. 150 468 [57] Aly A H, Elsayed H A and El-Naggar S A 2014 J. Mod. Opt. 61 1064 [58] Villeneuve P R and Piche M 1994 Quantum Electron. 18 153 [59] Diaz-Valencia B F and Calero J M 2017 J. Low Temp. Phys. 186 275 [60] Zamani M 2016 Phys. C 520 42 [61] Van Duzer T and Turner C W 1981 Phys. Today 35 80 [62] Degirmenci E and Landais P 2013 Appl. Opt. 52 7367 [63] Zhao Y and Grischkowsky D R 2007 IEEE Trans. Microw. Theor. Tech. 55 656 [64] Hu C, Zhang H and Liu G 2019 Appl. Opt. 58 2890 [65] Chang T W, Huang C H and Hou D J 2017 IEEE Photon. J. 9 1 [66] Song G Z, Kwek L C and Deng F G 2019 Phys. Rev. A 99 043830 [67] Baraket Z, Zaghdoudi J and Kanzari M 2017 Opt. Mater. 64 147 [68] Wu J and Gao J 2015 Optik 126 5368 [69] Elsayed H A, El-Naggar S A and Aly A H 2014 J. Mod. Opt. 61 385 [70] Fathollahi Khalkhali T and Bananej A 2017 J. Mod. Opt. 64 830 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|