Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 120305    DOI: 10.1088/1674-1056/ac8af8
GENERAL Prev   Next  

Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides

Ye-Qi Zhang(张业奇)1, Xiao-Ting Ding(丁潇婷)1, Jiao Sun(孙娇)1, and Tian-Hu Wang(王天虎)2,†
1 Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China;
2 School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
Abstract  We study the dynamics of the quantum steering between two separated qubits trapped in a one-dimensional plasmonic waveguide. By numerical methods, we calculate the quantum steerability and other quantum correlations, i.e., entanglement, discord, and coherence, for both cases with and without laser driving fields. It is found that steerability may exhibit a sudden disappearance and sudden reappearance phenomenon. Specifically, there exist time windows with no steerability but finite entanglement. The effects of plasmon wavenumber and the distance between the two qubits on steerability are also examined. Furthermore, we show that quantum steerability is tunable by adjusting the laser driving fields.
Keywords:  quantum steering      quantum correlations      plasmonic waveguide  
Received:  28 June 2022      Revised:  01 August 2022      Accepted manuscript online:  19 August 2022
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51876059 and 11805065) and the Fundamental Research Funds for the Central Universities (Grant Nos. 2021MS009 and 2021MS046).
Corresponding Authors:  Tian-Hu Wang     E-mail:

Cite this article: 

Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎) Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides 2022 Chin. Phys. B 31 120305

[1] Schrödinger E and Born M 1935 Proc. Cambridge Philos. Soc. 31 555
[2] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402
[3] Reid M D, Drummond P D, Bowen W P, Cavalcanti E G, Lam, P K, Bachor H A, Andersen U L and Leuchs G 2009 Rev. Mod. Phys. 81 1727
[4] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[5] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419
[6] Smith D H, Gillett G, Almeida M P D, Branciard C and White A G 2012 Nat. Commun. 3 625
[7] Wollmann S, Uola R and Costa A C S 2020 Phys. Rev. Lett. 125 020404
[8] Huang C Y, Xiang G Y, Guo Y, Wu K D, Liu B H, Li C F, Guo G C and Tavakoli A 2021 Phys. Rev. Lett. 127 020401
[9] Liu S, Han D, Wang N, Xiang Y, Sun F, Wang M, Qing Z, Gong Q, Sun X and He Q 2022 Phys. Rev. Lett. 128 200401
[10] Shi J, He X, Chen W, Li Y, Kang M, Cai Y and Xu H 2022 Nano Lett. 22 688
[11] Saunders D J, Jones S J, Wiseman H M and Pryde G J 2010 Nat. Phys. 7 918
[12] Wittmann B, Ramelow S, Steinlechner F, Langford N K, Brunner N, Wiseman H M, Ursin R and Zeilinger A 2012 New J. Phys. 14 053030
[13] Gallego R and Aolita L 2015 Phys. Rev. X 5 041008
[14] Branciard C, Cavalcanti E G, Walborn S P, Scarani V and Wiseman H M 2012 Phys. Rev. A 85 010301
[15] Xin J, Lu X M, Li X and Li G 2020 Opt. Exp. 28 11439
[16] Acín A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
[17] Jones B D M, Supic I, Uola R, Brunner N and Skrzypczyk P 2021 Phys. Rev. Lett. 127 170405
[18] Seifert L M, Beyer K, Luoma K and Strunz W T 2022 Phys. Rev. A 105 042413
[19] Kimble H J 2008 Nature 453 1023
[20] Yan Z H, Qin J L, Qin Z Z, Su X L, Jia X J, Xie C D and Peng K C 2021 Fundament. Res. 1 43
[21] Arauújo M O, Marinlo L S and Felinto D 2022 Phys. Rev. Lett. 128 083601
[22] Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C and Garcia-Vidal F J 2011 Phys. Rev. Lett. 106 020501
[23] Zheng H and Baranger H U 2013 Phys. Rev. Lett. 110 113601
[24] Hu Z D, Liang X, Wang J and Zhang Y 2016 Opt. Exp. 24 10817
[25] Domenikou N, Iliopoulos N, Terzis A F, Yannopapas V and Paspalakis E 2019 Quantum Inf. Proc. 18 362
[26] Tang W, Lin F, Zhu X and Fang Z 2019 Phys. Rev. B 100 165415
[27] Ryom J, Ko M, Kim N, Choe S, Kim C and Kim S 2021 Plasmonics 16 1577
[28] Li Y and Argyopoulos 2021 Appl. Phys. Lett. 119 211104
[29] Ryom J, Kim N, Ko M and Choe S 2022 Plasmonics 17 949
[30] Zayats A V, Smolyaninov I I and Maradudin A A 2005 Phys. Rep. 408 131
[31] Martin-Cano D, González-Tudela A, Martín-Moreno L, García-Vidal F J, Tejedor C and Moreno E 2011 Phys. Rev. B 84 235306
[32] Xu S and Fan S 2019 Phys. Rev. A 99 063806
[33] Boroviks S, Lin Z H, Zenin V A, Ziegler M, Dellith A, Gonçalves P A D, Wolff C, Bozhevolnyi S I, Huang J S and Mortensen N A 2022 Nat. Commun. 13 3105
[34] Huang Y, Zheng J, Pan B, Song L, Chen K A, Yu Z, Y H and Dai D 2022 APL Photonics 7 051301
[35] Saeed M, Ghaffar A, Rehman S U, Naz M Y, Shukrullah S and Naqvi Q A 2022 Plasmonics 17 901
[36] Yang L, Li P, Wang H and Li Z 2018 Chin. Phys. B 27 094216
[37] Smith C L C, Stenger N, Kristensen A, Mortensenb N A and Bozhevolnyid S I 2015 Nanoscale 7 9355
[38] Ficek Z and Tanaś R 2002 Phys. Rep. 372 369
[39] Dzsotjan D, Sorensen A S and Fleischhauer M 2010 Phys. Rev. B 82 075427
[40] Martin-Cano D, Martin-Moreno L, Garcia-Vidal F J and Moreno E 2010 Nano Lett. 10 3129
[41] Jones S J, Wiseman H M and Doherty A C 2007 Phys. Rev. A 76 052116
[42] Vandenberghe L and Boyd S 1996 SIAM Rev. 38 49
[43] Skrzypczyk P, Navascués M and Cavalcanti D 2014 Phys. Rev. Lett. 112 180404
[44] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[45] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[46] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[47] Chen L and Zhang Y Q 2017 Europhys. Lett. 120 60007
[48] Zhang Y Q and Sun Y T 2019 Quantum Inf. Process. 18 1
[49] Yu T and Eberly J H 2009 Science 323 598
[50] Uola R, Costa A C S, Nguyen H C and Gühne O 2020 Rev. Mod. Phys. 92 015001
[1] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[2] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[3] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[4] Generation of tripartite Einstein-Podolsky-Rosen steering by cascaded nonlinear process
Yu Liu(刘瑜), Su-Ling Liang(梁素玲), Guang-Ri Jin(金光日), You-Bin Yu(俞友宾), Jian-Yu Lan(蓝建宇), Xiao-Bin He(何小斌), Kang-Xian Guo(郭康贤). Chin. Phys. B, 2020, 29(5): 050301.
[5] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[6] Relations between tangle and I concurrence for even n-qubit states
Xin-Wei Zha(查新未), Ning Miao(苗宁), Ke Li(李轲). Chin. Phys. B, 2019, 28(12): 120304.
[7] Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions
Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮). Chin. Phys. B, 2018, 27(12): 120304.
[8] Tunable coupling of a hybrid plasmonic waveguide consisting of two identical dielectric cylinders and a silver film
Benli Wang(王本立), Han Liang(梁涵), Jiafang Li(李家方). Chin. Phys. B, 2017, 26(11): 114103.
[9] A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale
Li Zhi-Quan (李志全), Piao Rui-Qi (朴瑞琦), Zhao Jing-Jing (赵晶晶), Meng Xiao-Yun (孟晓云), Tong Kai (童凯). Chin. Phys. B, 2015, 24(7): 077303.
[10] Dynamical decoupling pulses on the quantum correlations for the system of superconducting quantum circuit
Wang Dong-Mei (王冬梅), Qian Yi (钱懿), Xu Jing-Bo (许晶波), Yu You-Hong (俞攸红). Chin. Phys. B, 2015, 24(11): 110304.
[11] Characterizing the dynamics of quantum discord under phase damping with POVM measurements
Jiang Feng-Jian (蒋峰建), Ye Jian-Feng (叶剑锋), Yan Xin-Hu (闫新虎), Lü Hai-Jiang (吕海江). Chin. Phys. B, 2015, 24(10): 100304.
[12] Measurement-induced disturbance in Heisenberg XY spin model with Dzialoshinskii-Moriya interaction under intrinsic decoherence
Shen Cheng-Gao (沈诚诰), Zhang Guo-Feng (张国锋), Fan Kai-Ming (樊开明), Zhu Han-Jie (朱汉杰). Chin. Phys. B, 2014, 23(5): 050310.
[13] Non-Markovian decoherent quantum walks
Xue Peng (薛鹏), Zhang Yong-Sheng (张永生). Chin. Phys. B, 2013, 22(7): 070302.
[14] Quantum correlation of a three-particle W-class state under quantum decoherence
Xu Peng (许鹏), Wang Dong (王栋), Ye Liu (叶柳). Chin. Phys. B, 2013, 22(10): 100306.
No Suggested Reading articles found!