|
|
Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides |
Ye-Qi Zhang(张业奇)1, Xiao-Ting Ding(丁潇婷)1, Jiao Sun(孙娇)1, and Tian-Hu Wang(王天虎)2,† |
1 Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China; 2 School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China |
|
|
Abstract We study the dynamics of the quantum steering between two separated qubits trapped in a one-dimensional plasmonic waveguide. By numerical methods, we calculate the quantum steerability and other quantum correlations, i.e., entanglement, discord, and coherence, for both cases with and without laser driving fields. It is found that steerability may exhibit a sudden disappearance and sudden reappearance phenomenon. Specifically, there exist time windows with no steerability but finite entanglement. The effects of plasmon wavenumber and the distance between the two qubits on steerability are also examined. Furthermore, we show that quantum steerability is tunable by adjusting the laser driving fields.
|
Received: 28 June 2022
Revised: 01 August 2022
Accepted manuscript online: 19 August 2022
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51876059 and 11805065) and the Fundamental Research Funds for the Central Universities (Grant Nos. 2021MS009 and 2021MS046). |
Corresponding Authors:
Tian-Hu Wang
E-mail: thwang@ncepu.edu.cn
|
Cite this article:
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎) Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides 2022 Chin. Phys. B 31 120305
|
[1] Schrödinger E and Born M 1935 Proc. Cambridge Philos. Soc. 31 555 [2] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402 [3] Reid M D, Drummond P D, Bowen W P, Cavalcanti E G, Lam, P K, Bachor H A, Andersen U L and Leuchs G 2009 Rev. Mod. Phys. 81 1727 [4] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [5] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419 [6] Smith D H, Gillett G, Almeida M P D, Branciard C and White A G 2012 Nat. Commun. 3 625 [7] Wollmann S, Uola R and Costa A C S 2020 Phys. Rev. Lett. 125 020404 [8] Huang C Y, Xiang G Y, Guo Y, Wu K D, Liu B H, Li C F, Guo G C and Tavakoli A 2021 Phys. Rev. Lett. 127 020401 [9] Liu S, Han D, Wang N, Xiang Y, Sun F, Wang M, Qing Z, Gong Q, Sun X and He Q 2022 Phys. Rev. Lett. 128 200401 [10] Shi J, He X, Chen W, Li Y, Kang M, Cai Y and Xu H 2022 Nano Lett. 22 688 [11] Saunders D J, Jones S J, Wiseman H M and Pryde G J 2010 Nat. Phys. 7 918 [12] Wittmann B, Ramelow S, Steinlechner F, Langford N K, Brunner N, Wiseman H M, Ursin R and Zeilinger A 2012 New J. Phys. 14 053030 [13] Gallego R and Aolita L 2015 Phys. Rev. X 5 041008 [14] Branciard C, Cavalcanti E G, Walborn S P, Scarani V and Wiseman H M 2012 Phys. Rev. A 85 010301 [15] Xin J, Lu X M, Li X and Li G 2020 Opt. Exp. 28 11439 [16] Acín A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501 [17] Jones B D M, Supic I, Uola R, Brunner N and Skrzypczyk P 2021 Phys. Rev. Lett. 127 170405 [18] Seifert L M, Beyer K, Luoma K and Strunz W T 2022 Phys. Rev. A 105 042413 [19] Kimble H J 2008 Nature 453 1023 [20] Yan Z H, Qin J L, Qin Z Z, Su X L, Jia X J, Xie C D and Peng K C 2021 Fundament. Res. 1 43 [21] Arauújo M O, Marinlo L S and Felinto D 2022 Phys. Rev. Lett. 128 083601 [22] Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C and Garcia-Vidal F J 2011 Phys. Rev. Lett. 106 020501 [23] Zheng H and Baranger H U 2013 Phys. Rev. Lett. 110 113601 [24] Hu Z D, Liang X, Wang J and Zhang Y 2016 Opt. Exp. 24 10817 [25] Domenikou N, Iliopoulos N, Terzis A F, Yannopapas V and Paspalakis E 2019 Quantum Inf. Proc. 18 362 [26] Tang W, Lin F, Zhu X and Fang Z 2019 Phys. Rev. B 100 165415 [27] Ryom J, Ko M, Kim N, Choe S, Kim C and Kim S 2021 Plasmonics 16 1577 [28] Li Y and Argyopoulos 2021 Appl. Phys. Lett. 119 211104 [29] Ryom J, Kim N, Ko M and Choe S 2022 Plasmonics 17 949 [30] Zayats A V, Smolyaninov I I and Maradudin A A 2005 Phys. Rep. 408 131 [31] Martin-Cano D, González-Tudela A, Martín-Moreno L, García-Vidal F J, Tejedor C and Moreno E 2011 Phys. Rev. B 84 235306 [32] Xu S and Fan S 2019 Phys. Rev. A 99 063806 [33] Boroviks S, Lin Z H, Zenin V A, Ziegler M, Dellith A, Gonçalves P A D, Wolff C, Bozhevolnyi S I, Huang J S and Mortensen N A 2022 Nat. Commun. 13 3105 [34] Huang Y, Zheng J, Pan B, Song L, Chen K A, Yu Z, Y H and Dai D 2022 APL Photonics 7 051301 [35] Saeed M, Ghaffar A, Rehman S U, Naz M Y, Shukrullah S and Naqvi Q A 2022 Plasmonics 17 901 [36] Yang L, Li P, Wang H and Li Z 2018 Chin. Phys. B 27 094216 [37] Smith C L C, Stenger N, Kristensen A, Mortensenb N A and Bozhevolnyid S I 2015 Nanoscale 7 9355 [38] Ficek Z and Tanaś R 2002 Phys. Rep. 372 369 [39] Dzsotjan D, Sorensen A S and Fleischhauer M 2010 Phys. Rev. B 82 075427 [40] Martin-Cano D, Martin-Moreno L, Garcia-Vidal F J and Moreno E 2010 Nano Lett. 10 3129 [41] Jones S J, Wiseman H M and Doherty A C 2007 Phys. Rev. A 76 052116 [42] Vandenberghe L and Boyd S 1996 SIAM Rev. 38 49 [43] Skrzypczyk P, Navascués M and Cavalcanti D 2014 Phys. Rev. Lett. 112 180404 [44] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [45] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 [46] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 [47] Chen L and Zhang Y Q 2017 Europhys. Lett. 120 60007 [48] Zhang Y Q and Sun Y T 2019 Quantum Inf. Process. 18 1 [49] Yu T and Eberly J H 2009 Science 323 598 [50] Uola R, Costa A C S, Nguyen H C and Gühne O 2020 Rev. Mod. Phys. 92 015001 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|