CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22 |
Yanfen Chang(畅艳芬)1,2, Kun Zhai(翟昆)1,2, Young Sun(孙阳)1,2 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Science, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Y-type hexaferrites with tunable conical magnetic structures are promising single-phase multiferroics that exhibit large magnetoelectric effects. We have investigated the influence of Co substitution on the magnetoelectric properties in the Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22 (x = 0.0, 0.4, 1.0, 1.6). The spin-induced electric polarization can be reversed by applying a low magnetic field for all the samples. The magnetoelectric phase diagrams of Ba0.3Sr1.7CoxMg2-xFe12O22 are obtained based on the measurements of magnetic field dependence of dielectric constant at selected temperatures. It is found that the substitution of Co ions can preserve the ferroelectric phase up to a higher temperature, and thus is beneficial for achieving single-phase multiferroics at room temperature.
|
Received: 05 December 2019
Revised: 06 January 2020
Accepted manuscript online:
|
PACS:
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51725104) and Beijing Natural Science Foundation, China (Grant No. Z180009). |
Corresponding Authors:
Young Sun
E-mail: youngsun@iphy.ac.cn
|
Cite this article:
Yanfen Chang(畅艳芬), Kun Zhai(翟昆), Young Sun(孙阳) Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22 2020 Chin. Phys. B 29 037701
|
[1] |
Hur N, Park S, Sharma P A, Ahn J S, Guha S and Cheong S W 2004 Nature 429 392
|
[2] |
Spaldin N A and Fiebig M 2005 Science 309 391
|
[3] |
Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
|
[4] |
Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21
|
[5] |
Scott J F 2007 Nat. Mater. 6 256
|
[6] |
Fiebig M 2005 J. Phys. D 38 R123
|
[7] |
Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55
|
[8] |
Chu Y H, Martin L W, Holcomb M B, Gajek M, Han S J, He Q, Balke N, Yang C H, Lee D, Hu W, Zhan Q, Yang P L, Rodríguez A F, Scholl A, Wang S X and Ramesh R 2008 Nat. Mater. 7 478
|
[9] |
Ebnabbasi K, Mohebbi M, Vittoria C 2013 J. Appl. Phys. 113 17C703
|
[10] |
Kitagawa Y, Hiraoka Y, Honda T, Ishikura T, Nakamura H and Kimura T 2010 Nat. Mater. 9 797
|
[11] |
Mohebbi M, Ebnabbasi K, Vittoria C 2013 J. Appl. Phys. 113 17C710
|
[12] |
Zheng H, Wang J, Lofland S E, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde S R, S Ogale S B, Bai F, Viehland D, Jia Y, Schlom D G, Wuttig M, Roytburd A and Ramesh R 2004 Science 303 661
|
[13] |
Okumura K, Ishikura T, Soda M, Asaka T, Nakamura H, Wakabayashi Y and Kimura T 2011 Appl. Phys. Lett. 98 212504
|
[14] |
Tokunaga Y, Kaneko Y, Okuyama D, Ishiwata S, Arima T, Wakimoto S, Kakurai K, Taguchi Y and Tokura Y 2010 Phys. Rev. Lett. 105 257201
|
[15] |
Kimura T, Lawes G, Ramirez A P 2005 Phys. Rev. Lett. 94 137201
|
[16] |
Wang F, Zou T, Yan L, Yi L and Sun Y 2012 Appl. Phys. Lett. 100 122901
|
[17] |
Kimura T 2012 Annu. Rev. Condens. Matter Phys. 3 93
|
[18] |
Wang G, Cao S, Cao Y, Hu S, Wang X, Feng Z, Kang B, Chai Y, Zhang J and Ren W 2015 J. Appl. Phys. 118 094102
|
[19] |
Zhai K, Wu Y, Shen S, Tian W, Cao H, Chai Y, Chakoumakos B C, Shang D, Yan L, Wang F and Sun Y 2017 Nat. Commun. 8 519
|
[20] |
Hirose S, Haruki K, Ando A and Kimura T 2014 Appl. Phys. Lett. 104 022907
|
[21] |
Kohn J A, Eckart D W and Cook C F 1971 Science 172 519
|
[22] |
Momozawa N, Yamaguchi Y, Takei H and Mita M 1985 J. Phys. Soc. Jpn. 54 771
|
[23] |
Hirose S, Haruki K, Ando A and Kimura T 2015 J. Am. Ceram. Soc. 98 2104
|
[24] |
Pullar R C 2012 Prog. Mater. Sci. 57 1191
|
[25] |
Kwon S, Kang B, Kim C, Jo E, Lee S, Chai Y S, Chun S H and Kim K H 2014 J. Phys.: Condens. Matter 26 146004
|
[26] |
Utsumi S, Yoshiba D and Momozawa N 2007 J. Phys. Soc. Jpn. 76 034704
|
[27] |
Won M H and Kim C S 2013 J. Appl. Phys. 113 17D906
|
[28] |
Albanese G, Carbucicchio M, Deriu A, Asti G and Rinaldi S 1975 Appl. Phys. 7 227
|
[29] |
Chang H, Lee H B, Song Y S, Chung J H, Kim S A, Oh I H, Reehuis M and Schefer J 2012 Phys. Rev. B 86 059905
|
[30] |
Ishiwata S, Taguchi Y, Murakawa H, Onose Y and Tokura Y 2008 Science 319 1643
|
[31] |
Taniguchi K, Abe N, Ohtani S, Umetsu H and Arima T H 2008 Appl. Phys. Express 1 031301
|
[32] |
Chun S H, Chai Y S, Oh Y S, Jaiswal-Nagar D, Haam S Y, Kim I, Lee B, Nam D H, Ko K T, Park J H, Chung J and Kim K H 2010 Phys. Rev. Lett. 104 037204
|
[33] |
Chang Y, Zhai K, Chai Y, Shang D and Sun Y 2018 J. Phys. D: Appl. Phys. 51 264002
|
[34] |
Shen S, Yan L, Chai Y, Cong J and Sun Y 2014 Appl. Phys. Lett. 104 032905
|
[35] |
Shen S, Liu X, Chai Y, Studer A J, He C, Wang S and Sun Y 2019 Phys. Rev. B 100 134433
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|