Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 037501    DOI: 10.1088/1674-1056/ab69e9
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes

Qian Zhao(赵倩)1, Xin-Xin He(何鑫鑫)1, Francois-Jacques Morvan(李文瀚)2, Guo-Ping Zhao(赵国平)1,3, Zhu-Bai Li(李柱柏)1
1 Inner Mongolia Key Laboratory for Utilization of Bayan Obo Multi-Metallic Resources, Elected State Key Laboratory, Department of Applied Physics, College of Science, Inner Mongolia University of Science and Technology, Baotou 014010, China;
2 Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China;
3 College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610066, China
Abstract  Hysteresis loops, energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe14B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional (3D) and one-dimensional (1D) micromagnetic methods, focused on the influence of the interface anisotropy. The calculated results are carefully compared with each other. The interface anisotropy effect is very palpable on the nucleation, pinning and coercive fields when the soft layer is very thin. However, as the soft layer thickness increases, the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises. Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field. The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal, i.e., nucleation, evolution and irreversible motion of the domain wall. The above results calculated by two models are in good agreement with each other. Moreover, the in-plane magnetic moment orientations based on two models are different. The 3D calculation shows a progress of generation and disappearance of vortex state, however, the magnetization orientations within the film plane calculated by the 1D model are coherent. Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.
Keywords:  micromagnetics      interface anisotropy      Nd2Fe14B/α-Fe multilayers      magnetic properties  
Received:  23 October 2019      Revised:  06 January 2020      Accepted manuscript online: 
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.40.Mg (Numerical simulation studies)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0700900), the National Natural Science Foundation of China (Grant Nos. 51571126 and 51861030), the Inner Mongolia Autonomous Region Natural Science Foundation of China (Grant No. 2019MS01002), and the Inner Mongolia Innovative Research Team of China (Grant No. 3400102).
Corresponding Authors:  Qian Zhao, Guo-Ping Zhao     E-mail:  zhaoqianqm@163.com;zhaogp@uestc.edu.cn

Cite this article: 

Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏) Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes 2020 Chin. Phys. B 29 037501

[1] Kneller E F and Hawig R 1991 IEEE Trans. Magn. 27 3588
[2] Liu W, Zhang Z D, Liu J P, Chen L J, He L D, Liu Y, Sun X K and Sellmyer D J 2002 Adv. Mater 14 1832
[3] Liu W, Li X Z, Liu J P, Sun X K, Chen C L, Skomski R, Zhang Z D and Sellmyer D J 2005 J. Appl. Phys. 97 104308
[4] Zhang Y, Kramer M J, Rong C B and Liu J P 2010 Appl. Phys. Lett. 97 032506
[5] Li Y Q, Yue M, Zuo J H, Zhang D T, Liu W Q, Zhang J X, Guo Z H and Li W 2013 IEEE Trans. Magn. 49 3391
[6] Skomski R 1994 J. Appl. Phys. 76 7059
[7] Victora R H and Shen X 2005 IEEE Trans. Magn. 41 2828
[8] Li Z B, Zhang M, Shen B G and Sunv J R 2013 Appl. Phys. Lett. 102 102405
[9] Zhang J, Takahashi Y K, Gopalan R and Hono K 2005 Appl. Phys. Lett. 86 122509
[10] Ryo H S, Hu L X, Kim J G and Yang Y L 2017 IEEE Trans. Magn. 53 7400207
[11] Poudyal N Y, Mohapatra J, Xing M Y, Kim C U and Liu J P 2018 IEEE Magn. Lett. 9 5501604
[12] Zhang W, Zhao G P, Yuan X H and Ye L N 2012 J. Magn. Magn. Mater. 324 4231
[13] Yuan X H, Zhao G P, Yue M, Ye L N, Xia J, Zhang X C and Chang J 2013 J. Magn. Magn. Mater. 343 245
[14] Weng X J, Shen L C, Tang H, Zhao G P, Xia J, Morvan F J and Zou J 2019 J. Magn. Magn. Mater. 475 352
[15] Asti G, Ghidini M, Pellicelli R, Pernechele C, Solzi M, Albertini F, Fabbrici S and Pareti L 2006 Phys. Rev. B 73 094406
[16] Asti G, Solzi M, Ghidini M and Neri F M 2004 Phys. Rev. B 69 174401
[17] Fan J P, Liang R Y, Bai Y H, Yang Y, Sun J, Jiang Y N, Wang F and Xu X H 2016 J. Appl. Phys. 119 233902
[18] Cui W B, Zheng S J, Liu W, Ma X L, Yang F, Yao Q, Zhao X G and Zhang Z D 2008 J. Appl. Phys. 104 053903
[19] Ghidini M, Asti G, Pelicelli R, Pernechele C and Solzi M 2007 J. Magn. Magn. Mater 316 159
[20] Cui W B, Takahashi Y K and Hono K 2012 Adv. Mater. 24 6530
[21] Zhao G P and Wang X L 2006 Phys. Rev. B 74 012409
[22] Zhao G P, Zhao M G, Lim H S, Feng Y P and Ong C K 2005 Appl. Phys. Lett. 87 162513
[23] Si W J, Zhao G P, Ran N, Peng Y and F J 2015 Sci. Rep. 5 16212
[24] Gradmann U and Müller J 1968 Phys. Stat. Solidi 27 313
[25] Néel L 1954 J. Phys. Radium. 15 225
[26] Chappert C and Bruno P 1988 J. Appl. Phys. 64 5736
[27] Bruno P and Renard J P 1989 Appl. Phys. A 49 499
[28] Gradmann U, Korecki J and Waller G 1986 Appl. Phys. A 39 101
[29] Pellicelli R, Solzi M and Pernechele C 2014 J. Phys. D: Appl. Phys. 47 115002
[30] Zhao Q, He X X, Morvan F J, Zhang X F, Zhao G P, Li Z B and Ma Q 2019 J. Magn. Magn. Mater 476 40
[31] Zhao Q, Chen J, Wang J Q, Zhang X F, Zhao G P and Ma Q 2017 Sci. Rep. 7 4286
[32] Zhao G P, Morvan F and Wan X L 2014 Rev. Nanosci. Nanotechnol. 3 227
[33] Zhao G P, Zhao L, Shen L C, Zou J and Qui L 2019 Chin. Phys. B 28 077505
[34] Johnson M T, Bloemen P J H, Broeder F J A D and Vries J J D 1996 Rep. Prog. Phys. 59 1409
[35] Fruchart O, Nozieres J P and Givord D 1997 J. Magn. Magn. Mater. 165 508
[36] Lin M T, Shen J, Kuch W, Jenniches H, Klaua M, Schneider C M and Kirschner J 1997 Phys. Rev. B 55 5886
[37] Zhao Q, He X X, Morvan F J, Zhang X F, Zhao G P, Li Z B, Li L F and Liu Y L 2020 J. Magn. Magn. Mater 495 165858
[38] Donahue M J and Porter D G 1999 OOMMF User's Guide Version 1.0. NISTIR 6376 NIST, Gaithersburg, M D
[39] Gilbert T L 2004 IEEE Trans. Magn. 40 3443
[40] Skomski R and Coey J M D 1993 Phys. Rev. B 48 15812
[41] Brown J W F 1945 Rev. Mod. Phys. 17 15
[1] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[2] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[3] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[4] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[5] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[6] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[7] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[8] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[9] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[10] Electronic and magnetic properties of single-layer and double-layer VX2 (X=Cl, Br) under biaxial stress
Xing Li(李兴), Yanfeng Ge(盖彦峰), Jun Li(李军), Wenhui Wan(万文辉), and Yong Liu(刘永). Chin. Phys. B, 2021, 30(10): 107305.
[11] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[12] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[13] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[14] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[15] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
No Suggested Reading articles found!