Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 067304    DOI: 10.1088/1674-1056/28/6/067304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Method of evaluating interface traps in Al2O3/AlGaN/GaN high electron mobility transistors

Si-Qin-Gao-Wa Bao(包斯琴高娃)1,2,3, Xiao-Hua Ma(马晓华)1,2, Wei-Wei Chen(陈伟伟)4, Ling Yang(杨凌)1,2, Bin Hou(侯斌)1,2, Qing Zhu(朱青)1,2, Jie-Jie Zhu(祝杰杰)1,2, Yue Hao(郝跃)2
1 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China;
2 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
3 School of Science, Inner Mongolia University of Technology, Hohhot 010051, China;
4 China Academy of Space Technology(Xi'an), Xi'an 710071, China
Abstract  

In this paper, the interface states of the AlGaN/GaN metal-insulator-semiconductor (MIS) high electron mobility transistors (HEMTs) with an Al2O3 gate dielectric are systematically evaluated. By frequency-dependent capacitance and conductance measurements, trap density and time constant at Al2O3/AlGaN and AlGaN/GaN interface are determined. The experimental results reveal that the density of trap states and the activation energy at the Al2O3/AlGaN interface are much higher than at the AlGaN/GaN interface. The photo-assisted capacitance-voltage measurements are performed to characterize the deep-level traps located near mid-gap at the Al2O3/AlGaN interface, which indicates that a density of deep-level traps is lower than the density of the shallow-level states.

Keywords:  AlGaN/GaN      HEMTs      interface traps      frequency-dependent C-V measurements      photo-assisted C-V measurements  
Received:  20 November 2018      Revised:  02 April 2019      Accepted manuscript online: 
PACS:  73.61.Ey (III-V semiconductors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
Fund: 

Project supported by the Key Program of National Natural Science Foundation of China (Grant Nos. 61334002 and 61634005) and the National Natural Science Foundation of China (Grant Nos. 61604114 and 61704124).

Corresponding Authors:  Xiao-Hua Ma     E-mail:  xhma@xidian.edu.cn

Cite this article: 

Si-Qin-Gao-Wa Bao(包斯琴高娃), Xiao-Hua Ma(马晓华), Wei-Wei Chen(陈伟伟), Ling Yang(杨凌), Bin Hou(侯斌), Qing Zhu(朱青), Jie-Jie Zhu(祝杰杰), Yue Hao(郝跃) Method of evaluating interface traps in Al2O3/AlGaN/GaN high electron mobility transistors 2019 Chin. Phys. B 28 067304

[1] Hove M V, Kang X, Stoffels S, Wellekens D, Ronchi N, Venegas R, Geens K and Decoutere S 2013 IEEE Trans. Electron. Dev. 60 3071
[2] Choi W, Seok O, Ryu H, Cha H Y and Seo K S 2014 IEEE Electron Dev. Lett. 35 175
[3] Seo D W, Choi H G, Twynam J, Kim K M, Yim J S, Moon S W, Jung S, Lee J and Roh S D 2014 IEEE Electron Dev. Lett. 35 446
[4] Fagerlind M, Allerstam F, Sveinbjornsson E O, Rorsman N, Kakanakova-Georgieva A, Lundskog A, Forsberg U and Janzen E 2010 J. Appl. Phys. 108 014508
[5] Oka T and Nozawa T 2008 IEEE Electron Dev. Lett. 29 668
[6] Swenson B L and Mishra U K 2009 J. Appl. Phys. 106 064902
[7] Kordos P, Heidelberger G, Bernat J, Fox A, Marso M and Luth H 2005 Appl. Phys. Lett. 87 143501
[8] Niiyama Y, Shinagawa T, Ootomo S, Kambayashi H, Nomura T and Yoshida S 2007 Phys. Stat. Sol. (a) 204 2032
[9] Huang W, Khan T and Chow T P 2006 IEEE Electron Dev. Lett. 27 796
[10] Kanamura M, Ohki T, Kikkawa T, Imanishi K, Imada T, Yamada A and Hara N 2010 IEEE Electron Dev. Lett. 31 189
[11] Hashizume T, Ootomo S and Hasegawa H 2003 Appl. Phys. Lett. 83 2952
[12] Yang S, Tang Z, Wong K Y, Lin Y S, Liu C, Lu Y, Huang S and Chen K J 2013 IEEE Electron Dev. Lett. 34 1497
[13] Chu R, Corrion A, Chen M, Li R, Wong D, Zehnder D, Hughes B and Boutros K 2011 IEEE Electron Dev. Lett. 32 632
[14] Tian F and Chor E F 2010 J. Electrochem. Soc. 157 H557
[15] Liu C, Chor E F and Tan L S 2006 Appl. Phys. Lett. 88 173504
[16] Hayashi Y, Kishimoto S and Mizutani T 2010 Solid-State Electron. 54 1451
[17] Ye G, Wang H, Arulkumaran S, Ng G I, Hofstetter R, Li Y, An, M J, Ang K S, Maung Y K T and Foo S C 2013 Appl. Phys. Lett. 103 142109
[18] Deen D, Storm D, Meyer D, Katzer D S, Bass R, Binari S and Gougousi T 2011 Phys. Status Solidi C 8 2420
[19] Kikkawa T, Makiyama K, Ohki T, Kanamura M, Imanishi K, Hara N and Joshin K 2009 Phys. Status Solidi A 206 1135
[20] Deen D A, Storm D F, Bass R, Meyer D J, Katzer D S, Binari S C, Lacis J W and Gougousi T 2011 Appl. Phys. Lett. 98 023506
[21] Ye P D, Yang B, Ng K K, Bude J, Wilk G D, Halder S and Hwang J C M 2005 Appl. Phys. Lett. 86 063501
[22] Liu Z H, Ng G I, Arulkumaran S, Maung Y K T, Teo K L, Foo S C and Sahmuganathan V 2009 Appl. Phys. Lett. 95 223501
[23] Mizue C, Hori Y, Miczek M and Hashizume T 2011 Jpn. J. Appl. Phys. 50 021001
[24] Hao Y, Yang L, Ma X H, Ma J G, Cao M Y, Pan C Y, Wang C and Zhang J C 2011 IEEE Electron Dev. Lett. 32 626
[25] Ma X H, Zhu J J, Liao X Y, Yue T, Chen W W and Hao Y 2013 Appl. Phys. Lett. 103 033510
[26] Long R D, Jackson C M, Yang J, Hazeghi A, Hitzman C, Majety S, Arehart A R, Nishi Y, Ma T P, Ringel S A and Mclntyre P C 2013 Appl. Phys. Lett. 103 201607
[27] Hung T H, Park P S, Krishnamoorthy S, Nath D N and Rajan S 2014 IEEE Electron Dev. Lett. 35 312
[28] Johnson D W, Lee R T P, Hill R J W, Wong M H, Bersuker G, Piner E L, Kirsch P D and Harris H R 2013 IEEE Trans. Electron. Dev. 60 3197
[29] Tapajna M, Jurkovic M, Valik L, Hascik S, Gregusova D, Brunner F, Cho E M and Kuzmik J 2013 Appl. Phys. Lett. 102 243509
[30] Lu Y, Yang S, jiang Q, Tang Z, Li B and Chen K J 2013 Phys. Status Solidi C 10 1397
[31] Miller E J, Dang X Z, Wieder H H, Asbeck P M, Yu E T, Sullivan G J and Redwing J M 2000 J. Appl. Phys. 87 8070
[32] Stoklas R, Gregusova D, Novak J, Vescan A and Kordos P 2008 Appl. Phys. Lett. 93 124103
[33] Gregusova D, Stoklas R, Mizue C, Hori Y, Novak J, Hashizume T and Kordos P 2010 J. Appl. Phys. 107 106104
[34] Kordos P, Stoklas R, Gregusova D, Gazi S and Novak J 2010 Appl. Phys. Lett. 96 013505
[35] Zhu J J, Ma X H, Xie Y, Hou B, Chen W W, Zhang J C and Hao Y 2015 IEEE Trans. Electron. Dev. 62 512
[36] Ma X H, Chen W W, Hou B, Zhang K, Zhu J J, Zhang J C, Zheng X F and Hao Y 2014 Appl. Phys. Lett. 104 093504
[37] Hori Y, Yatabe Z and Hashizume T 2013 J. Appl. Phys. 114 244503
[38] Yatabe Z, Hori Y, Ma W C, Asubar J T, Akazawa M, Sato T and Hashizume T 2014 Jpn. J. Appl. Phys. 53 100213
[39] Zhang K, Xue J S, Cao M Y, Yang L Y, Chen Y H, Zhang J C, Ma X H and Hao Y 2013 J. Appl. Phys. 113 174503
[40] Arslan E, Butun S, Lisesivdin S B, Kasap M, Ozcelik S and Ozbay E 2008 J. Appl. Phys. 103 103701
[41] Arehart A R, Corrion A, Poblenz C, Speck J S, Mishra U K and Ringel S A 2008 Appl. Phys. Lett. 93 112101
[42] Johnstone D 2007 Proc. SPIE, December 16-18, 2007, Gifu, Japan, 64730L
[43] Elsner J, Jones R, Heggie M I, Sitch P K, Haugk M, Frauenheim T, Oberg S and Briddon P R 1998 Phys. Rev. B 58 12571
[44] Chua S J, Choi H W, Zhang J and Li P 2001 Phys. Rev. B 64 205302
[45] Puzyrev Y S, Roy T, Beck M, Tuttle B R, Schrimpf R D, Fleetwood D M and Pantelides S T 2011 J. Appl. Phys. 109 034501
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[3] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[4] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[5] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[6] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[7] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[8] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[9] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[10] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[11] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[12] Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress
Yi-Dong Yuan(原义栋), Dong-Yan Zhao(赵东艳), Yan-Rong Cao(曹艳荣), Yu-Bo Wang(王于波), Jin Shao(邵瑾), Yan-Ning Chen(陈燕宁), Wen-Long He(何文龙), Jian Du(杜剑), Min Wang(王敏), Ye-Ling Peng(彭业凌), Hong-Tao Zhang(张宏涛), Zhen Fu(付振), Chen Ren(任晨), Fang Liu(刘芳), Long-Tao Zhang(张龙涛), Yang Zhao(赵扬), Ling Lv(吕玲), Yi-Qiang Zhao(赵毅强), Xue-Feng Zheng(郑雪峰), Zhi-Mei Zhou(周芝梅), Yong Wan(万勇), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2021, 30(7): 077305.
[13] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[14] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
[15] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
No Suggested Reading articles found!