CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress |
Yi-Dong Yuan(原义栋)1,2, Dong-Yan Zhao(赵东艳)2, Yan-Rong Cao(曹艳荣)3,4,†, Yu-Bo Wang(王于波)2, Jin Shao(邵瑾)1, Yan-Ning Chen(陈燕宁)2, Wen-Long He(何文龙)3,4,†, Jian Du(杜剑)2, Min Wang(王敏)2,3, Ye-Ling Peng(彭业凌)2, Hong-Tao Zhang(张宏涛)3,4, Zhen Fu(付振)2, Chen Ren(任晨)2,3, Fang Liu(刘芳)2, Long-Tao Zhang(张龙涛)2,3, Yang Zhao(赵扬)2, Ling Lv(吕玲)4, Yi-Qiang Zhao(赵毅强)1, Xue-Feng Zheng(郑雪峰)4, Zhi-Mei Zhou(周芝梅)5, Yong Wan(万勇)5, and Xiao-Hua Ma(马晓华)4 |
1 School of Microelectronics, Tianjin University, Tianjin 300072, China; 2 Beijing Engineering Research Center of High-reliability IC with Power Industrial Grade, Beijing Smart-Chip Microelectronics Technology Co., Ltd, Beijing 100192, China; 3 School of Electro-Mechanical Engineering, Xidian University, Xi'an 710071, China; 4 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China; 5 Smart Shine Microelectronics Technology Co., Ltd, Qingdao 100081, China |
|
|
Abstract The performance degradation of gate-recessed metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) is compared with that of conventional high electron mobility transistor (HEMT) under direct current (DC) stress, and the degradation mechanism is studied. Under the channel hot electron injection stress, the degradation of gate-recessed MOS-HEMT is more serious than that of conventional HEMT devices due to the combined effect of traps in the barrier layer, and that under the gate dielectric of the device. The threshold voltage of conventional HEMT shows a reduction under the gate electron injection stress, which is caused by the barrier layer traps trapping the injected electrons and releasing them into the channel. However, because of defects under gate dielectrics which can trap the electrons injected from gate and deplete part of the channel, the threshold voltage of gate-recessed MOS-HEMT first increases and then decreases as the conventional HEMT. The saturation phenomenon of threshold voltage degradation under high field stress verifies the existence of threshold voltage reduction effect caused by gate electron injection.
|
Received: 13 November 2020
Revised: 25 December 2020
Accepted manuscript online: 29 January 2021
|
PACS:
|
73.61.Ey
|
(III-V semiconductors)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
Fund: Project supported by the Laboratory Open Fund of Beijing Smart-chip Microelectronics Technology Co., Ltd and the National Natural Science Foundation of China (Grant No. 11690042), the Science Challenge Project, China (Grant Nos. TZ2018004 and 12035019), and the National Major Scientific Research Instrument Projects, China (Grant No. 61727804). |
Corresponding Authors:
Yan-Rong Cao, Wen-Long He
E-mail: yrcao@mail.xidian.edu.cn;he.wenlong1991@163.com
|
Cite this article:
Yi-Dong Yuan(原义栋), Dong-Yan Zhao(赵东艳), Yan-Rong Cao(曹艳荣), Yu-Bo Wang(王于波), Jin Shao(邵瑾), Yan-Ning Chen(陈燕宁), Wen-Long He(何文龙), Jian Du(杜剑), Min Wang(王敏), Ye-Ling Peng(彭业凌), Hong-Tao Zhang(张宏涛), Zhen Fu(付振), Chen Ren(任晨), Fang Liu(刘芳), Long-Tao Zhang(张龙涛), Yang Zhao(赵扬), Ling Lv(吕玲), Yi-Qiang Zhao(赵毅强), Xue-Feng Zheng(郑雪峰), Zhi-Mei Zhou(周芝梅), Yong Wan(万勇), and Xiao-Hua Ma(马晓华) Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress 2021 Chin. Phys. B 30 077305
|
[1] Raja P V, Bouslama M, Sarkar S, Pandurang K R, Nallatamby J C, DasGupta N and Das Gupta A 2020 IEEE Trans. Electron Dev. 67 2304 [2] Radhakrishna U, Choi P and Antoniadis D A 2010 IEEE Trans. Electron Dev. 66 95 [3] Huang S, Liu X, Wang X, Kang X, Zhang J, Fan J, Shi J, Wei K, Zheng Y, Gao H, Sun Q, Wang M, Shen B and Chen K J 2018 IEEE Trans. Electron Dev. 65 207 [4] Zhang S, Wei K, Xiao Y, Ma X H, Zhang Y C, Liu G G, Lei T M, Zheng Y K, Huang S, Wang N, Asif M and Liu X Y 2018 Chin. Phys. B 27 097309 [5] Wu Y F, Kapolnek D, Ibbetson J P, Parikh P, Keller B P and Mishra U K 2001 IEEE Trans. Electron Dev. 48 586 [6] Hao Y, Yang L, Ma X H, Ma J G, Cao M Y, Pan C Y, Wang C and Zhang J C 2011 IEEE Electron Dev. Lett. 32 626 [7] Acurio E, Crupi F, Magnone P, Trojman L and Lucolano F 2017 Microelectron. Eng. 178 42 [8] Lee C T and Wang C C 2018 AIP Adv. 8 045014 [9] Kim H S, Jang W H, Eom S K, Han S W, Kim H, Seo K S, Cho C H and Cha H Y 2018 J. Semicond. Technol. Sci. 18 187 [10] Zhu J J, Jing S Q, Ma X H, Liu S Y, Wang P F, Zhang Y C, Zhu Q, Mi M H, Hou B, Yang L, Kuball M and Hao Y 2020 IEEE Trans. Electron Dev. 67 3541 [11] Jiang H X, Zhu R Q, Lyu Q and Lau K M 2019 IEEE Electron Dev. Lett. 40 530 [12] Li S C, Hu Q L, Wang X, Li T Y, Li X F and Wu Y Q 2019 IEEE Electron Dev. Lett. 40 295 [13] Efthymiou L, Murukesan K, Longobardi G, Udrea F Shibib A and Terrill K 2019 IEEE Electron Dev. Lett. 40 1253 [14] Mao W, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C and Hao Y 2016 Chin. Phys. B 25 127305 [15] Meneghesso G, Mion A, Neviani A, Matloubian M, Brown J, Hafizi M, Liu T, Canali C, Pavesi M, Manfredi M and Zanoni E 1996 IEEE Electron Devices Meeting, San Francisco, CA, USA p. 43 [16] Dammann M, Pletschen W, Waltereit P, Bronner W, Quay R, Muller S, Mikulla M, Ambacher O, van der Wel P J, Murad S, Rödle T, Behtash R, Bourgeois F, Riepe K, Fagerlind M and Sveinbjornsson E O 2009 Microelectron. Reliab. 49 474 [17] Trew R J, Liu Y, Kuang W W and Bilbro G L 2006 IEEE Compound Semiconductor Integrated Circuit Symposium, San Antonio, TX, USA p. 103 [18] Gu W P, Hao Y, Zhang J C, Wang C, Feng Q and Ma X H 2009 Chin. J. Phys. 58 511 [19] Koley G, Kim H, Eastman L F and Spencer M G 2003 Electron. Lett. 39 1217 [20] Nicollian E H and Goetzberger A 1967 Bell System Technical Journal 46 1055 [21] Sicre S B F and De Souza M M 2010 IEEE Trans. Electron Dev. 57 1642 [22] Ghosh S, Das S, Dinara S M, Bag A, Chakraborty A, Mukhopadhyay P, Jana S K, and Biswas D 2018 IEEE Trans. Electron Dev. 65 1333 [23] Kim H, Thompson R M, Tilak V, Prunty T R, Shealy J R and Eastman L F 2003 IEEE Electron Dev. Lett. 24 421 [24] Coffie R, Chen Y C, Smorchkova I, Wojtowicz M, Chou Y C, Heying B and Oki A 2006 IEEE International Reliability Physics Symposium Proceedings, San Jose, CA, USA p. 99 [25] Fu L H, Lu H, Chen D J, Zhang R, Zheng Y K, Wei K and Liu X Y 2012 Chin. Phys. B 21 108503 [26] Schroder D K 2006 Semiconductor Material and Device Characterization (New York: Wiley) p. 784 [27] Shih H A, Kudo M and Suzuki T K 2012 Appl. Phys. Lett. 101 043501 [28] Gregušová D, Stoklas R, Mizue C H, Hori Y, Novák J, Hashizume T and Kordoš P 2010 J. Appl. Phys. 107 106104 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|