Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077305    DOI: 10.1088/1674-1056/abe117
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress

Yi-Dong Yuan(原义栋)1,2, Dong-Yan Zhao(赵东艳)2, Yan-Rong Cao(曹艳荣)3,4,†, Yu-Bo Wang(王于波)2, Jin Shao(邵瑾)1, Yan-Ning Chen(陈燕宁)2, Wen-Long He(何文龙)3,4,†, Jian Du(杜剑)2, Min Wang(王敏)2,3, Ye-Ling Peng(彭业凌)2, Hong-Tao Zhang(张宏涛)3,4, Zhen Fu(付振)2, Chen Ren(任晨)2,3, Fang Liu(刘芳)2, Long-Tao Zhang(张龙涛)2,3, Yang Zhao(赵扬)2, Ling Lv(吕玲)4, Yi-Qiang Zhao(赵毅强)1, Xue-Feng Zheng(郑雪峰)4, Zhi-Mei Zhou(周芝梅)5, Yong Wan(万勇)5, and Xiao-Hua Ma(马晓华)4
1 School of Microelectronics, Tianjin University, Tianjin 300072, China;
2 Beijing Engineering Research Center of High-reliability IC with Power Industrial Grade, Beijing Smart-Chip Microelectronics Technology Co., Ltd, Beijing 100192, China;
3 School of Electro-Mechanical Engineering, Xidian University, Xi'an 710071, China;
4 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China;
5 Smart Shine Microelectronics Technology Co., Ltd, Qingdao 100081, China
Abstract  The performance degradation of gate-recessed metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) is compared with that of conventional high electron mobility transistor (HEMT) under direct current (DC) stress, and the degradation mechanism is studied. Under the channel hot electron injection stress, the degradation of gate-recessed MOS-HEMT is more serious than that of conventional HEMT devices due to the combined effect of traps in the barrier layer, and that under the gate dielectric of the device. The threshold voltage of conventional HEMT shows a reduction under the gate electron injection stress, which is caused by the barrier layer traps trapping the injected electrons and releasing them into the channel. However, because of defects under gate dielectrics which can trap the electrons injected from gate and deplete part of the channel, the threshold voltage of gate-recessed MOS-HEMT first increases and then decreases as the conventional HEMT. The saturation phenomenon of threshold voltage degradation under high field stress verifies the existence of threshold voltage reduction effect caused by gate electron injection.
Keywords:  gate-recessed MOS-HEMTs      channel electron injection      gate electron injection      barrier layer traps  
Received:  13 November 2020      Revised:  25 December 2020      Accepted manuscript online:  29 January 2021
PACS:  73.61.Ey (III-V semiconductors)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: Project supported by the Laboratory Open Fund of Beijing Smart-chip Microelectronics Technology Co., Ltd and the National Natural Science Foundation of China (Grant No. 11690042), the Science Challenge Project, China (Grant Nos. TZ2018004 and 12035019), and the National Major Scientific Research Instrument Projects, China (Grant No. 61727804).
Corresponding Authors:  Yan-Rong Cao, Wen-Long He     E-mail:  yrcao@mail.xidian.edu.cn;he.wenlong1991@163.com

Cite this article: 

Yi-Dong Yuan(原义栋), Dong-Yan Zhao(赵东艳), Yan-Rong Cao(曹艳荣), Yu-Bo Wang(王于波), Jin Shao(邵瑾), Yan-Ning Chen(陈燕宁), Wen-Long He(何文龙), Jian Du(杜剑), Min Wang(王敏), Ye-Ling Peng(彭业凌), Hong-Tao Zhang(张宏涛), Zhen Fu(付振), Chen Ren(任晨), Fang Liu(刘芳), Long-Tao Zhang(张龙涛), Yang Zhao(赵扬), Ling Lv(吕玲), Yi-Qiang Zhao(赵毅强), Xue-Feng Zheng(郑雪峰), Zhi-Mei Zhou(周芝梅), Yong Wan(万勇), and Xiao-Hua Ma(马晓华) Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress 2021 Chin. Phys. B 30 077305

[1] Raja P V, Bouslama M, Sarkar S, Pandurang K R, Nallatamby J C, DasGupta N and Das Gupta A 2020 IEEE Trans. Electron Dev. 67 2304
[2] Radhakrishna U, Choi P and Antoniadis D A 2010 IEEE Trans. Electron Dev. 66 95
[3] Huang S, Liu X, Wang X, Kang X, Zhang J, Fan J, Shi J, Wei K, Zheng Y, Gao H, Sun Q, Wang M, Shen B and Chen K J 2018 IEEE Trans. Electron Dev. 65 207
[4] Zhang S, Wei K, Xiao Y, Ma X H, Zhang Y C, Liu G G, Lei T M, Zheng Y K, Huang S, Wang N, Asif M and Liu X Y 2018 Chin. Phys. B 27 097309
[5] Wu Y F, Kapolnek D, Ibbetson J P, Parikh P, Keller B P and Mishra U K 2001 IEEE Trans. Electron Dev. 48 586
[6] Hao Y, Yang L, Ma X H, Ma J G, Cao M Y, Pan C Y, Wang C and Zhang J C 2011 IEEE Electron Dev. Lett. 32 626
[7] Acurio E, Crupi F, Magnone P, Trojman L and Lucolano F 2017 Microelectron. Eng. 178 42
[8] Lee C T and Wang C C 2018 AIP Adv. 8 045014
[9] Kim H S, Jang W H, Eom S K, Han S W, Kim H, Seo K S, Cho C H and Cha H Y 2018 J. Semicond. Technol. Sci. 18 187
[10] Zhu J J, Jing S Q, Ma X H, Liu S Y, Wang P F, Zhang Y C, Zhu Q, Mi M H, Hou B, Yang L, Kuball M and Hao Y 2020 IEEE Trans. Electron Dev. 67 3541
[11] Jiang H X, Zhu R Q, Lyu Q and Lau K M 2019 IEEE Electron Dev. Lett. 40 530
[12] Li S C, Hu Q L, Wang X, Li T Y, Li X F and Wu Y Q 2019 IEEE Electron Dev. Lett. 40 295
[13] Efthymiou L, Murukesan K, Longobardi G, Udrea F Shibib A and Terrill K 2019 IEEE Electron Dev. Lett. 40 1253
[14] Mao W, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C and Hao Y 2016 Chin. Phys. B 25 127305
[15] Meneghesso G, Mion A, Neviani A, Matloubian M, Brown J, Hafizi M, Liu T, Canali C, Pavesi M, Manfredi M and Zanoni E 1996 IEEE Electron Devices Meeting, San Francisco, CA, USA p. 43
[16] Dammann M, Pletschen W, Waltereit P, Bronner W, Quay R, Muller S, Mikulla M, Ambacher O, van der Wel P J, Murad S, Rödle T, Behtash R, Bourgeois F, Riepe K, Fagerlind M and Sveinbjornsson E O 2009 Microelectron. Reliab. 49 474
[17] Trew R J, Liu Y, Kuang W W and Bilbro G L 2006 IEEE Compound Semiconductor Integrated Circuit Symposium, San Antonio, TX, USA p. 103
[18] Gu W P, Hao Y, Zhang J C, Wang C, Feng Q and Ma X H 2009 Chin. J. Phys. 58 511
[19] Koley G, Kim H, Eastman L F and Spencer M G 2003 Electron. Lett. 39 1217
[20] Nicollian E H and Goetzberger A 1967 Bell System Technical Journal 46 1055
[21] Sicre S B F and De Souza M M 2010 IEEE Trans. Electron Dev. 57 1642
[22] Ghosh S, Das S, Dinara S M, Bag A, Chakraborty A, Mukhopadhyay P, Jana S K, and Biswas D 2018 IEEE Trans. Electron Dev. 65 1333
[23] Kim H, Thompson R M, Tilak V, Prunty T R, Shealy J R and Eastman L F 2003 IEEE Electron Dev. Lett. 24 421
[24] Coffie R, Chen Y C, Smorchkova I, Wojtowicz M, Chou Y C, Heying B and Oki A 2006 IEEE International Reliability Physics Symposium Proceedings, San Jose, CA, USA p. 99
[25] Fu L H, Lu H, Chen D J, Zhang R, Zheng Y K, Wei K and Liu X Y 2012 Chin. Phys. B 21 108503
[26] Schroder D K 2006 Semiconductor Material and Device Characterization (New York: Wiley) p. 784
[27] Shih H A, Kudo M and Suzuki T K 2012 Appl. Phys. Lett. 101 043501
[28] Gregušová D, Stoklas R, Mizue C H, Hori Y, Novák J, Hashizume T and Kordoš P 2010 J. Appl. Phys. 107 106104
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[3] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[4] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[5] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
[6] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[7] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[8] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[9] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[10] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[11] Investigation on threshold voltage of p-channel GaN MOSFETs based on p-GaN/AlGaN/GaN heterostructure
Ruo-Han Li(李若晗), Wu-Xiong Fei(费武雄), Rui Tang(唐锐), Zhao-Xi Wu(吴照玺), Chao Duan(段超), Tao Zhang(张涛), Dan Zhu(朱丹), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087305.
[12] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[13] Electrochemical liftoff of freestanding GaN by a thick highly conductive sacrificial layer grown by HVPE
Xiao Wang(王骁), Yu-Min Zhang(张育民), Yu Xu(徐俞), Zhi-Wei Si(司志伟), Ke Xu(徐科), Jian-Feng Wang(王建峰), and Bing Cao(曹冰). Chin. Phys. B, 2021, 30(6): 067306.
[14] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[15] Analysis of the decrease of two-dimensional electron gas concentration in GaN-based HEMT caused by proton irradiation
Jin-Jin Tang(汤金金), Gui-Peng Liu(刘贵鹏), Jia-Yu Song(宋家毓), Gui-Juan Zhao(赵桂娟), and Jian-Hong Yang(杨建红). Chin. Phys. B, 2021, 30(2): 027303.
No Suggested Reading articles found!