Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 066402    DOI: 10.1088/1674-1056/28/6/066402
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Pressure-induced isostructural phase transition in α-Ni(OH)2 nanowires

Xin Ma(马鑫), Zhi-Hui Li(李志慧), Xiao-Ling Jing(荆晓玲), Hong-Kai Gu(顾宏凯), Hui Tian(田辉), Qing Dong(董青), Peng Wang(王鹏), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), Zhen Yao(姚震), Bing-Bing Liu(刘冰冰)
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract  

High pressure structural phase transition of monoclinic paraotwayite type α-Ni(OH)2 nanowires with a diameter of 15 nm-20 nm and a length of several micrometers were studied by synchrotron x-ray diffraction (XRD) and Raman spectra. It is found that the α-Ni(OH)2 nanowires experience an isostructural phase transition associated with the amorphization of the H-sublattice of hydroxide in the interlayer spaces of the two-dimensional crystal structure at 6.3 GPa-9.3 GPa. We suggest that the isostructural phase transition can be attributed to the amorphization of the H-sublattice. The bulk moduli for the low pressure phase and the high pressure phase are 41.2 (4.2) GPa and 94.4 (5.6) GPa, respectively. Both the pressure-induced isostructural phase transition and the amorphization of the H-sublattice in the α-Ni(OH)2 nanowires are reversible upon decompression. Our results show that the foreign anions intercalated between the α-Ni(OH)2 layers play important roles in their structural phase transition.

Keywords:  nickel hydroxide      high pressure      synchrotron radiation      isostructural phase transition  
Received:  30 January 2019      Revised:  12 March 2019      Accepted manuscript online: 
PACS:  64.70.Nd (Structural transitions in nanoscale materials)  
  91.60.Gf (High-pressure behavior)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  61.05.cp (X-ray diffraction)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0305900), the National Natural Science Foundation of China (Grant Nos. 11874172, 11374120, 11634004, and 51320105007), and the Fund from Jilin University for Science and Technology Innovative Research Team (Grant No. 2017TD-01).

Corresponding Authors:  Quan-Jun Li, Zhen Yao     E-mail:  liquanjun@jlu.edu.cn;yaozhenjlu@163.com

Cite this article: 

Xin Ma(马鑫), Zhi-Hui Li(李志慧), Xiao-Ling Jing(荆晓玲), Hong-Kai Gu(顾宏凯), Hui Tian(田辉), Qing Dong(董青), Peng Wang(王鹏), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), Zhen Yao(姚震), Bing-Bing Liu(刘冰冰) Pressure-induced isostructural phase transition in α-Ni(OH)2 nanowires 2019 Chin. Phys. B 28 066402

[1] Hauel A P 1939 Trans. Electrochem. Soc. 76 435
[2] Ran J G, Yu J G and Jaroniec M 2011 Green Chem. 13 2708
[3] Gao M R, Sheng W C, Zhuang Z B, Fang Q R, Gu S, Jiang J and Yan Y S 2014 J. Am. Chem. Soc. 136 7077
[4] Aghazadeh M, Ghaemi M, Sabour B and Dalvand S 2014 J. Solid State Electrochem. 18 1569
[5] Chen J C, Hsu C T and Hu C C 2014 J. Power Sources 253 205
[6] Mortimer R J, Sialvi M Z, Varley T S and Wilcox G D 2014 J. Solid State Electrochem. 18 3359
[7] Cordoba-Torresi S I, Gabrielli C, Goff A H L and Torresi R 1991 J. Electrochem. Soc. 138 1548
[8] Fan Y, Yang Z J, Cao X H, Liu P F, Chen S and Cao Z 2014 J. Electrochem. Soc. 161 B201
[9] Miao Y Q, Ouyang L, Zhou S L, Xu L N, Yang Z Y, Xiao M S and Ouyang R Z 2014 Biosens. Bioelectron. 53 428
[10] Bode H, Dehmelt K and Witte J 1966 Electrochim. Acta 11 1079
[11] McEwen R S 1971 J. Phys. Chem. 75 1782
[12] Yang D N, Wang R M, He M H, Zhang J and Liu Z F 2005 J. Phys. Chem. B 109 7654
[13] Williams Q and Hemley R J 2001 Ann. Rev. Earth Planet. Sci. 29 365
[14] Zhang Z, Cui H, Yang D P, Zhang J, Tang S X, Wu S and Cui Q L 2017 Chin. Phys. B 26 106402
[15] Gao Y P, Dong W Q, Li G and Liu R P 2018 Chin. Phys. Lett. 35 036103
[16] Petch H E and Megaw H D 1954 J. Opt. Soc. Am. 44 744
[17] Kruger M B, Williams Q and Jeanloz R 1989 J. Chem. Phys. 91 5910
[18] Meade C and Jeanloz R 1990 Geophys. Res. Lett. 17 1157
[19] Duffy T S, Meade C, Fei Y W, Mao H K and Hemley R J 1995 Am. Mineral. 80 222
[20] Nguyen J H, Kruger M B and Jeanloz R 1997 Phys. Rev. Lett. 78 1936
[21] Parise J B, Loveday J S, Nelmes R J and Kagi H 1999 Phys. Rev. Lett. 83 328
[22] Murli C, Sharma S M, Kulshreshtha S K and Sikka S K 2001 Physica B 307 111
[23] Dong L H, Chu Y and Sun W D 2008 Chem. Eur. J. 14 5064
[24] Yuan Y F, Zhang Z T, Wang W K, Zhou Y H, Chen X L, An C, Zhang R R, Zhou Y, Gu C C, Li L, Li X J and Yang Z R 2018 Chin. Phys. B 27 066201
[25] Garg N, Karmakar S, Sharma S M, Busseto E and Sikka S K 2004 Physica B 349 245
[26] Efthimiopoulos I, Kemichick J, Zhou X, Khare S V, Ikuta D and Wang Y 2014 J. Phys. Chem. A 118 1713
[27] Manjón F J, Vilaplana R, Gomis O, Pérez-González E, SantamaríaP érez D, Marín-Borrás V, Segura A, González J, Rodríguez-Hernández P, Muñoz A, Drasar C, Kucek V and Muñoz-Sanjosé V 2013 Phys. Status Solidi B 250 669
[28] Pereira A L J, Sans J A, Vilaplana R, Gomis O, Manjón F J, Rodríguez-Hernández P, Muñoz A, Popescu C and Beltrán A 2014 J. Phys. Chem. C 118 23189
[29] Hall D S, Lockwood D J, Poirier S, Bock C and MacDougall B R 2012 J. Phys. Chem. A 116 6771
[30] Cornilsen B C, Karjala P J and Loyselle P L 1988 J. Power Sources 22 351
[31] Nguyen J H, Kruger M B and Jeanloz R 1994 Phys. Rev. B 49 3734
[32] Speziale S, Jeanloz R, Milner A, Pasternak M P and Zaug J M 2005 Phys. Rev. B 71 184106
[33] Nagai T, Hattori T and Yamanaka T 2000 Am. Mineral. 85 760
[34] Parise J B, Leinenweber K, Weidner D J, Tan K and Dreele R B V 1994 Am. Mineral. 79 193
[35] Parise J B, Theroux B, Li R, Loveday J S, Marshall W G and Klotz S 1998 Phys. Chem. Miner. 25 130
[36] Nagai T, Ito T, Hattori T and Yamanaka T 2000 Phys. Chem. Miner 27 462
[37] Shim S H, Rekhi S, Martin M C and Jeanlo R 2006 Phys. Rev. B 74 024107
[38] Wang W D, He D W, Xiao W S, Wang S M and Xu J A 2013 Chin. Phys. Lett. 30 117201
[39] Liu Q Q, Wang F R, Li F Y, Chen L C, Yu R C, Jin C Q, Li Y C and Liu J 2008 Chin. Phys. Lett. 25 2239
[40] Fei Y W and Mao H K 1993 J. Geophys. Res. 98 11875
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[3] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[4] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[5] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[6] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[7] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[8] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[9] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
[12] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[13] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[14] Pressure-induced novel structure with graphene-like boron-layer in titanium monoboride
Yuan-Yuan Jin(金园园), Jin-Quan Zhang(张金权), Shan Ling(凌山), Yan-Qi Wang(王妍琪), Song Li(李松), Fang-Guang Kuang(匡芳光), Zhi-Yan Wu(武志燕), and Chuan-Zhao Zhang(张传钊). Chin. Phys. B, 2022, 31(11): 116104.
[15] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
No Suggested Reading articles found!