CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Pressure-induced isostructural phase transition in α-Ni(OH)2 nanowires |
Xin Ma(马鑫), Zhi-Hui Li(李志慧), Xiao-Ling Jing(荆晓玲), Hong-Kai Gu(顾宏凯), Hui Tian(田辉), Qing Dong(董青), Peng Wang(王鹏), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), Zhen Yao(姚震), Bing-Bing Liu(刘冰冰) |
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China |
|
|
Abstract High pressure structural phase transition of monoclinic paraotwayite type α-Ni(OH)2 nanowires with a diameter of 15 nm-20 nm and a length of several micrometers were studied by synchrotron x-ray diffraction (XRD) and Raman spectra. It is found that the α-Ni(OH)2 nanowires experience an isostructural phase transition associated with the amorphization of the H-sublattice of hydroxide in the interlayer spaces of the two-dimensional crystal structure at 6.3 GPa-9.3 GPa. We suggest that the isostructural phase transition can be attributed to the amorphization of the H-sublattice. The bulk moduli for the low pressure phase and the high pressure phase are 41.2 (4.2) GPa and 94.4 (5.6) GPa, respectively. Both the pressure-induced isostructural phase transition and the amorphization of the H-sublattice in the α-Ni(OH)2 nanowires are reversible upon decompression. Our results show that the foreign anions intercalated between the α-Ni(OH)2 layers play important roles in their structural phase transition.
|
Received: 30 January 2019
Revised: 12 March 2019
Accepted manuscript online:
|
PACS:
|
64.70.Nd
|
(Structural transitions in nanoscale materials)
|
|
91.60.Gf
|
(High-pressure behavior)
|
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0305900), the National Natural Science Foundation of China (Grant Nos. 11874172, 11374120, 11634004, and 51320105007), and the Fund from Jilin University for Science and Technology Innovative Research Team (Grant No. 2017TD-01). |
Corresponding Authors:
Quan-Jun Li, Zhen Yao
E-mail: liquanjun@jlu.edu.cn;yaozhenjlu@163.com
|
Cite this article:
Xin Ma(马鑫), Zhi-Hui Li(李志慧), Xiao-Ling Jing(荆晓玲), Hong-Kai Gu(顾宏凯), Hui Tian(田辉), Qing Dong(董青), Peng Wang(王鹏), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), Zhen Yao(姚震), Bing-Bing Liu(刘冰冰) Pressure-induced isostructural phase transition in α-Ni(OH)2 nanowires 2019 Chin. Phys. B 28 066402
|
[1] |
Hauel A P 1939 Trans. Electrochem. Soc. 76 435
|
[2] |
Ran J G, Yu J G and Jaroniec M 2011 Green Chem. 13 2708
|
[3] |
Gao M R, Sheng W C, Zhuang Z B, Fang Q R, Gu S, Jiang J and Yan Y S 2014 J. Am. Chem. Soc. 136 7077
|
[4] |
Aghazadeh M, Ghaemi M, Sabour B and Dalvand S 2014 J. Solid State Electrochem. 18 1569
|
[5] |
Chen J C, Hsu C T and Hu C C 2014 J. Power Sources 253 205
|
[6] |
Mortimer R J, Sialvi M Z, Varley T S and Wilcox G D 2014 J. Solid State Electrochem. 18 3359
|
[7] |
Cordoba-Torresi S I, Gabrielli C, Goff A H L and Torresi R 1991 J. Electrochem. Soc. 138 1548
|
[8] |
Fan Y, Yang Z J, Cao X H, Liu P F, Chen S and Cao Z 2014 J. Electrochem. Soc. 161 B201
|
[9] |
Miao Y Q, Ouyang L, Zhou S L, Xu L N, Yang Z Y, Xiao M S and Ouyang R Z 2014 Biosens. Bioelectron. 53 428
|
[10] |
Bode H, Dehmelt K and Witte J 1966 Electrochim. Acta 11 1079
|
[11] |
McEwen R S 1971 J. Phys. Chem. 75 1782
|
[12] |
Yang D N, Wang R M, He M H, Zhang J and Liu Z F 2005 J. Phys. Chem. B 109 7654
|
[13] |
Williams Q and Hemley R J 2001 Ann. Rev. Earth Planet. Sci. 29 365
|
[14] |
Zhang Z, Cui H, Yang D P, Zhang J, Tang S X, Wu S and Cui Q L 2017 Chin. Phys. B 26 106402
|
[15] |
Gao Y P, Dong W Q, Li G and Liu R P 2018 Chin. Phys. Lett. 35 036103
|
[16] |
Petch H E and Megaw H D 1954 J. Opt. Soc. Am. 44 744
|
[17] |
Kruger M B, Williams Q and Jeanloz R 1989 J. Chem. Phys. 91 5910
|
[18] |
Meade C and Jeanloz R 1990 Geophys. Res. Lett. 17 1157
|
[19] |
Duffy T S, Meade C, Fei Y W, Mao H K and Hemley R J 1995 Am. Mineral. 80 222
|
[20] |
Nguyen J H, Kruger M B and Jeanloz R 1997 Phys. Rev. Lett. 78 1936
|
[21] |
Parise J B, Loveday J S, Nelmes R J and Kagi H 1999 Phys. Rev. Lett. 83 328
|
[22] |
Murli C, Sharma S M, Kulshreshtha S K and Sikka S K 2001 Physica B 307 111
|
[23] |
Dong L H, Chu Y and Sun W D 2008 Chem. Eur. J. 14 5064
|
[24] |
Yuan Y F, Zhang Z T, Wang W K, Zhou Y H, Chen X L, An C, Zhang R R, Zhou Y, Gu C C, Li L, Li X J and Yang Z R 2018 Chin. Phys. B 27 066201
|
[25] |
Garg N, Karmakar S, Sharma S M, Busseto E and Sikka S K 2004 Physica B 349 245
|
[26] |
Efthimiopoulos I, Kemichick J, Zhou X, Khare S V, Ikuta D and Wang Y 2014 J. Phys. Chem. A 118 1713
|
[27] |
Manjón F J, Vilaplana R, Gomis O, Pérez-González E, SantamaríaP érez D, Marín-Borrás V, Segura A, González J, Rodríguez-Hernández P, Muñoz A, Drasar C, Kucek V and Muñoz-Sanjosé V 2013 Phys. Status Solidi B 250 669
|
[28] |
Pereira A L J, Sans J A, Vilaplana R, Gomis O, Manjón F J, Rodríguez-Hernández P, Muñoz A, Popescu C and Beltrán A 2014 J. Phys. Chem. C 118 23189
|
[29] |
Hall D S, Lockwood D J, Poirier S, Bock C and MacDougall B R 2012 J. Phys. Chem. A 116 6771
|
[30] |
Cornilsen B C, Karjala P J and Loyselle P L 1988 J. Power Sources 22 351
|
[31] |
Nguyen J H, Kruger M B and Jeanloz R 1994 Phys. Rev. B 49 3734
|
[32] |
Speziale S, Jeanloz R, Milner A, Pasternak M P and Zaug J M 2005 Phys. Rev. B 71 184106
|
[33] |
Nagai T, Hattori T and Yamanaka T 2000 Am. Mineral. 85 760
|
[34] |
Parise J B, Leinenweber K, Weidner D J, Tan K and Dreele R B V 1994 Am. Mineral. 79 193
|
[35] |
Parise J B, Theroux B, Li R, Loveday J S, Marshall W G and Klotz S 1998 Phys. Chem. Miner. 25 130
|
[36] |
Nagai T, Ito T, Hattori T and Yamanaka T 2000 Phys. Chem. Miner 27 462
|
[37] |
Shim S H, Rekhi S, Martin M C and Jeanlo R 2006 Phys. Rev. B 74 024107
|
[38] |
Wang W D, He D W, Xiao W S, Wang S M and Xu J A 2013 Chin. Phys. Lett. 30 117201
|
[39] |
Liu Q Q, Wang F R, Li F Y, Chen L C, Yu R C, Jin C Q, Li Y C and Liu J 2008 Chin. Phys. Lett. 25 2239
|
[40] |
Fei Y W and Mao H K 1993 J. Geophys. Res. 98 11875
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|