CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Calculation of the infrared frequency and the damping constant (full width at half maximum) for metal organic frameworks |
M Kurt1, H Yurtseven2, A Kurt3, S Aksoy1 |
1 Department of Physics, Çanakkale 18 Mart University, 17100 Çanakkale, Turkey;
2 Department of Physics, Middle East Technical University, 06531 Ankara, Turkey;
3 Lapseki ?ÇDA? Ç?B MTAL High School, 17100 Çanakkale, Turkey |
|
|
Abstract The ρ(NH2) infrared (IR) frequencies and the corresponding full width at half maximum (FWHM) values for (CH3)2NH2FeⅢMⅡ(HCOO)6 (DMFeM, M=Ni, Zn, Cu, Fe, and Mg) are analyzed at various temperatures by using the experimental data from the literature. For the analysis of the IR frequencies of the ρ (NH2) mode which is associated with the structural phase transitions in those metal structures, the temperature dependence of the mode frequency is assumed as an order parameter and the IR frequencies are calculated by using the molecular field theory. Also, the temperature dependence of the IR frequencies and of the damping constant as calculated from the models of pseudospin (dynamic disorder of dimethylammonium (DMA+) cations)-phonon coupling (PS) and of the energy fluctuation (EF), is fitted to the observed data for the wavenumber and FWHM of the ρ (NH2) IR mode of the niccolites studied here. We find that the observed behavior of the IR frequencies and the FWHM of this mode can be described adequately by the models studied for the crystalline structures of interest. This method of calculating the frequencies (IR and Raman) and FWHM of modes which are responsible for the phase transitions can also be applied to some other metal organic frameworks.
|
Received: 28 January 2019
Revised: 10 April 2019
Accepted manuscript online:
|
PACS:
|
64.10.+h
|
(General theory of equations of state and phase equilibria)
|
|
64.60.-i
|
(General studies of phase transitions)
|
|
64.70.-p
|
(Specific phase transitions)
|
|
Corresponding Authors:
M Kurt
E-mail: mkurt@comu.edu.tr
|
Cite this article:
M Kurt, H Yurtseven, A Kurt, S Aksoy Calculation of the infrared frequency and the damping constant (full width at half maximum) for metal organic frameworks 2019 Chin. Phys. B 28 066401
|
[1] |
Allendorf M, Bauer C A, Bhakta R K and Houk R J T 2009 Chem. Soc. Rev. 38 1330
|
[2] |
Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S B T and Hupp J T 2009 Chem. Soc. Rev. 38 1450
|
[3] |
Kreno L E, Leong K, Farha O K, Allendorf M, Duyne R P V and Hupp J T 2012 Chem. Rev. 112 1105
|
[4] |
Zhang W and Xiong R G 2012 Chem. Rev. 112 1163
|
[5] |
Rogez G, Viart N and Drillon M 2010 Angew Chem. Int. Ed. 49 1921
|
[6] |
Mason J A, Veenstra M and Long J R 2014 Chem. Sci. 5 32
|
[7] |
Maczka M, Sieradzki A, Bondzior B, Deren P, Hanuza J and Hermanowicz K 2015 J. Mater. Chem. C 3 9337
|
[8] |
Ghosh S, Di Sante D and Stroppa A 2015 J. Phys. Chem. Lett. 6 4553
|
[9] |
Maczka M, Pasinska K, Ptak M, Paraguassu W, Almeida da Silva T, Sieradzki A and Pikul A 2016 Phys. Chem. Chem. Phys. 18 31653
|
[10] |
Clune A J, Hughey K D, Lee C, Abhyankar N, Ding X, Dalal N S, Whangbo M H, Singleton J and Musfeld J L 2017 Phys. Rev. B 96 104424
|
[11] |
Maczka M, Gagor A, Ptak M, Paraguassu W, Almeida da Silva T, Sieradzki A and Pikul A 2017 Chem. Mater. 29 2264
|
[12] |
Ciupa A, Maczka M, Gagor A, Pikul A and Ptak M 2015 Dalton Trans. 44 13234
|
[13] |
Ciupa A, Maczka M, Gagor A, Sieradzki A, Trzmiel J, Pikul A and Ptak M 2015 Dalton Trans. 44 8846
|
[14] |
Hagen K S, Naik S G, Huynh B H, Masello A and Christou G J 2009 Am. Chem. Soc. 131 7516
|
[15] |
Canadillas-Delgado L, Fabelo O, Rodriguez-Velamazan J A, Lemee-Cailleau M H, Mason S A, Pardo E, Lloret F, Zhao J P, Bu X H, Simonet V, Colin C V and Rodriguez-Carvajal J 2012 J. Am. Chem. Soc. 134 19772
|
[16] |
Yamada Y, Mori M and Noda Y 1972 J. Phys. Soc. Jpn. 32 1565
|
[17] |
Matsushita M 1967 J. Chem. Phys. 65 23
|
[18] |
Lahajnar G, Blinc R and Zumer S 1974 Phys. Cond. Matter 18 301
|
[19] |
Schaack G and Winterfeldt V 1977 Ferroelectrics 15 35
|
[20] |
Laulicht I 1978 J. Phys. Chem. Solids 39 901
|
[21] |
Brout R 1965 Phase Transitions (NewYork: Benjamin) pp. 7-44
|
[22] |
Yurtseven H and Karacali H 2006 Spectrochimica Acta A 65 421
|
[23] |
Zhao J P, Hu B W, Lloret F, Tao J, Yang Q, Zhang X F and Bu X H 2010 Inorg. Chem. 49 10390
|
[24] |
Jain P, Ramchandron V, Clark R J, Zhou H D, Toby R H, Dalal N S, Kroto H W and Cheetham A K J 2009 J. Am. Chem. Soc. 131 13625
|
[25] |
Fu D W, Zhang W, Cai H L, Zhang Y, Ge J Z, Xiong R G, Huang S D and Nakamura T 2011 Angew. Chem. Int. Ed. 50 11947
|
[26] |
Maczka M, Ptak M and Macalik L 2014 Vib. Spectrosc. 71 98
|
[27] |
Sanchez-Andujar M, Gomez-Aguirre L C, Pato Doldan B, Yanez-Vilar S, Artiga R, Llamas-Saiz A L, Manna R S, Schnelle S, Lang M, Ritter F, Haghighirad A and Senaris-Rodriguez M A 2014 Cryst. Eng. Comm. 6 3558
|
[28] |
Maczka M, Zierkiewicz W, Michalska D and Hanuza J 2014 Spectrochim. Acta A 128 674
|
[29] |
Maczka M, Gagor A, Macalik B, Pikul A, Ptak M and Hanuza J 2014 Inorg. Chem. 53 457
|
[30] |
Maczka M, Pietraszko A, Macalik L, Sieradzki A, Trzmiel J and Pikul A 2014 Dalton Trans. 43 17075
|
[31] |
Shang R, Chen S, Wang Z M and Gao S 2014 Metal-Organic Framework Materials, eds. MacGilliuray R L and Lukehart C M (John Wiley Sons) pp. 221-238
|
[32] |
Wang W, Yan L Q, Cong J Z, et al. 2013 Sci. Rep. 3 2024
|
[33] |
Gou M, Cai H L and Xiong R G 2010 Inorg. Chem. Commun. 13 1590
|
[34] |
Yurtseven H and Arslan A 2018 Ferroelectrics 526 9
|
[35] |
Szymborska-Malek K, Trzebiatowska-Gutowska M, Maczka M and Gagor A 2016 Spectrochim. Acta A 159 35
|
[36] |
Maczka M, Almedia da Silva T, Paraguassu W and Pereira da Silva K 2016 Spectrochim. Acta. A 156 112
|
[37] |
Maczka M, Kadlubanski P, Freire P T C, Macalik B, Paraguassu W, Hermanowicz K and Hanuza J 2014 Inorg. Chem. 53 9615
|
[38] |
Sanchez-Andujar M, Presedo S, Yanez-Vilar S, et al. 2010 Inorg. Chem. 49 1510
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|