Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 066801    DOI: 10.1088/1674-1056/28/6/066801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Real-space observation on standing configurations of phenylacetylene on Cu (111) by scanning probe microscopy

Jing Qi(戚竞)1, Yi-Xuan Gao(高艺璇)1, Li Huang(黄立)1, Xiao Lin(林晓)1, Jia-Jia Dong(董佳家)2, Shi-Xuan Du(杜世萱)1,3, Hong-Jun Gao(高鸿钧)1,3
1 Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2 Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China;
3 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China
Abstract  

The adsorption configurations of molecules adsorbed on substrates can significantly affect their physical and chemical properties. A standing configuration can be difficult to determine by traditional techniques, such as scanning tunneling microscopy (STM) due to the superposition of electronic states. In this paper, we report the real-space observation of the standing adsorption configuration of phenylacetylene on Cu (111) by non-contact atomic force microscopy (nc-AFM). Deposition of phenylacetylene at 25 K shows featureless bright spots in STM images. Using nc-AFM, the line features representing the C-H and C-C bonds in benzene rings are evident, which implies a standing adsorption configuration. Further density functional theory (DFT) calculations reveal multiple optimized adsorption configurations with phenylacetylene breaking its acetylenic bond and forming C-Cu bond(s) with the underlying copper atoms, and hence stand on the substrate. By comparing the nc-AFM simulations with the experimental observation, we identify the standing adsorption configuration of phenylacetylene on Cu (111). Our work demonstrates an application of combining nc-AFM measurements and DFT calculations to the study of standing molecules on substrates, which enriches our knowledge of the adsorption behaviors of small molecules on solid surfaces at low temperatures.

Keywords:  phenylacetylene      adsorption configuration      scanning probe microscopy      density functional theory  
Received:  11 March 2019      Revised:  04 April 2019      Accepted manuscript online: 
PACS:  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  07.79.-v (Scanning probe microscopes and components)  
  31.15.E (Density-functional theory)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0202300 and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61888102, 61474141, and 21661132006), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11604373), the Outstanding Youth Science Foundation, China (Grant No. 61622116), and the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (Grant Nos. XDB28000000 and XDB30000000).

Corresponding Authors:  Li Huang, Shi-Xuan Du     E-mail:  lhuang@iphy.ac.cn;sxdu@iphy.ac.cn

Cite this article: 

Jing Qi(戚竞), Yi-Xuan Gao(高艺璇), Li Huang(黄立), Xiao Lin(林晓), Jia-Jia Dong(董佳家), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Real-space observation on standing configurations of phenylacetylene on Cu (111) by scanning probe microscopy 2019 Chin. Phys. B 28 066801

[1] Giancarlo L C, Fang H B, Rubin S M, Bront A A and Flynn G W 1998 J. Phys. Chem. B 102 10255
[2] Kirakosian A, Comstock M J, Cho J and Crommie M F 2005 Phys. Rev. B 71 113409
[3] Ramoino L, von Arx M, Schintke S, Baratoff A, Guntherodt H J and Jung T A 2006 Chem. Phys. Lett. 417 22
[4] Du S X, Gao H J, Seidel C, Tsetseris L, Ji W, Kopf H, Chi L F, Fuchs H, Pennycook S J and Pantelides S T 2006 Phys. Rev. Lett. 97 156105
[5] Zaera F 2002 Surf. Sci. 500 947
[6] Somorjai G A and Yang M C 2003 Top. Catal 24 61
[7] Deng X Y, Min B K, Guloy A and Friend C M 2005 J. Am. Chem. Soc. 127 9267
[8] Velic D, Hotzel A, Wolf M and Ertl G 1998 J. Chem. Phys. 109 9155
[9] Schroeder P G, France C B, Park J B and Parkinson B A 2002 J. Appl. Phys. 91 3010
[10] Huang W X and White J M 2004 J. Phys. Chem. B 108 5060
[11] Shi D, Ji W, Lin X, He X, Lian J, Gao L, Cai J, Lin H, Du S, Lin F, Seidel C, Chi L, Hofer W, Fuchs H and Gao H J 2006 Phys. Rev. Lett. 96 226101
[12] Li N, Huang Y, Du F, He X B, Lin X, Gao H J, Ma Y F, Li F F, Chen Y S and Eklund P C 2006 Nano Lett. 6 1141
[13] Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C and Gao H J 2007 Phys. Rev. Lett. 99 106402
[14] Gao L, Liu Q, Zhang Y Y, Jiang N, Zhang H G, Cheng Z H, Qiu W F, Du S X, Liu Y Q, Hofer W A and Gao H J 2008 Phys. Rev. Lett. 101 197209
[15] Zhang H G, Mao J H, Liu Q, Jiang N, Zhou H T, Guo H M, Shi D X and Gao H J 2010 Chin. Phys. B 19 018105
[16] Esat T, Friedrich N, Tautz F S and Temirov R 2018 Nature 558 573
[17] Schliwa M and Woehlke G 2003 Nature 422 759
[18] Hu Y B, Zhu Y, Gao H J and Guo H 2005 Phys. Rev. Lett. 95 156803
[19] Stöhr J 1992 NEXAFS Spectroscopy (Berlin, Heidelberg: Springer-Verlag)
[20] Hofmann S 2013 Auger- and X-Ray Photoelectron Spectroscopy in Materials Science (Berlin, Heidelberg: Springer-Verlag)
[21] Gimzewski J K and Joachim C 1999 Science 283 1683
[22] Larson A M, van Baren J, Kintigh J, Wang J, Tang J M, Zahl P, Miller G P and Pohl K 2018 J. Phys. Chem. C 122 11938
[23] Vernisse L, Guillermet O, Gourdon A and Coratger R 2018 Surf. Sci. 669 87
[24] Peng J B, Guo J, Hapala P, Cao D Y, Ma R Z, Cheng B W, Xu L M, Ondracek M, Jelinek P, Wang E G and Jiang Y 2018 Nat. Commun. 9 122
[25] Moreno C, Stetsovych O, Shimizu T K and Custance O 2015 Nano Lett. 15 2257
[26] Albrecht F, Pavlicek N, Herranz-Lancho C, Ruben M and Repp J 2015 J. Am. Chem. Soc. 137 7424
[27] Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitian E, Pena D, Gourdon A and Meyer G 2012 Science 337 1326
[28] Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 Science 325 1110
[29] Pavlicek N, Fleury B, Neu M, Niedenfuhr J, Herranz-Lancho C, Ruben M and Repp J 2012 Phys. Rev. Lett. 108 086101
[30] Zhang J, Chen P C, Yuan B K, Ji W, Cheng Z H and Qiu X H 2013 Science 342 611
[31] Gross L, Mohn F, Moll N, Meyer G, Ebel R, Abdel-Mageed W M and Jaspars M 2010 Nat. Chem. 2 821
[32] Giessibl F J 2003 Rev. Mod. Phys. 75 949
[33] Iucci G, Carravetta V, Altamura P, Russo M V, Paolucci G, Goldoni A and Polzonetti G 2004 Chem. Phys. 302 43
[34] Sohn Y, Wei W and White J M 2007 J. Phys. Chem. C 111 5101
[35] Li Q, Han C B, Fuentes-Cabrera M, Terrones H, Sumpter B G, Lu W C, Bernholc J, Yi J Y, Gai Z, Baddorf A P, Maksymovych P and Pan M H 2012 ACS Nano 6 9267
[36] Bartels L, Meyer G and Rieder K H 1997 Appl. Phys. Lett. 71 213
[37] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[38] Blochl P E 1994 Phys. Rev. B 50 17953
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Hapala P, Kichin G, Wagner C, Tautz F S, Temirov R and Jelinek P 2014 Phys. Rev. B 90 085421
[41] Shiotari A, Odani T and Sugimoto Y 2018 Phys. Rev. Lett. 121 116101
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!