INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Synthesis and characterization of β-Ga2O3@GaN nanowires |
Shuang Wang(王爽), Yue-Wen Li(李悦文), Xiang-Qian Xiu(修向前), Li-Ying Zhang(张丽颖), Xue-Mei Hua(华雪梅), Zi-Li Xie(谢自力), Tao Tao(陶涛), Bin Liu(刘斌), Peng Chen(陈鹏), Rong Zhang(张荣), You-Dou Zheng(郑有炓) |
Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China |
|
|
Abstract In this work, we prepared the β-Ga2O3@GaN nanowires (NWs) by oxidizing GaN NWs. High-quality hexagonal wurtzite GaN NWs were achieved and the conversion from GaN to β-Ga2O3 was confirmed by x-ray diffraction, Raman spectroscopy and transmission electron microscopy. The effect of the oxidation temperature and time on the oxidation degree of GaN NWs was investigated systematically. The oxidation rate of GaN NWs was estimated at different temperatures.
|
Received: 12 November 2018
Revised: 09 December 2018
Accepted manuscript online:
|
PACS:
|
81.16.-c
|
(Methods of micro- and nanofabrication and processing)
|
|
81.07.Gf
|
(Nanowires)
|
|
81.16.Pr
|
(Micro- and nano-oxidation)
|
|
Fund: Project supported by National Key Research and Development Program of China (Grant No. 2017YFB0404201), State Key Research and Development Program of Jiangsu Province, China (Grant No. BE2018115), the Fund from the Solid-state Lighting & Energy-saving Electronics Collaborative Innovation Center, PAPD, and the Fund from the State Grid Shandong Electric Power Company. |
Corresponding Authors:
Xiang-Qian Xiu, Zi-Li Xie, Rong Zhang
E-mail: xqxiu@nju.edu.cn;xzl@nju.edu.cn;rzhang@nju.edu.cn
|
Cite this article:
Shuang Wang(王爽), Yue-Wen Li(李悦文), Xiang-Qian Xiu(修向前), Li-Ying Zhang(张丽颖), Xue-Mei Hua(华雪梅), Zi-Li Xie(谢自力), Tao Tao(陶涛), Bin Liu(刘斌), Peng Chen(陈鹏), Rong Zhang(张荣), You-Dou Zheng(郑有炓) Synthesis and characterization of β-Ga2O3@GaN nanowires 2019 Chin. Phys. B 28 028104
|
[1] |
Strite S and Morkoc H 1992 J. Vac. Sci. Technol. B 10 1237
|
[2] |
Song P, Wu Z, Shen X, Kang J, Fang Z and Zhang T Y 2017 Crystengcomm 19 625
|
[3] |
Stepanov S I, Nikolaev V I, Bougrov V E and Romanov A E 2016 Rev. Adv. Mater. Sci. 44 63
|
[4] |
Babichev A V, Zhang H, Lavenus P, Julien F H, Egorov A Y, Lin Y T, Tu L W and Tchernycheva M 2013 Appl. Phys. Lett. 103 201103
|
[5] |
López I, Castaldini A, Cavallini A, Nogales E, Méndez B and Piqueras J 2014 J. Phys. D: Appl. Phys. 47 415101
|
[6] |
Xu K, Xu C, Xie Y, Deng J, Zhu Y, Guo W, Xun M, Teo K B K, Chen H and Sun J 2015 IEEE Trans. Electron. Dev. 62 2802
|
[7] |
Liu T T, Zhang K, Zhu G R, Zhou J J, Kong Y C, Yu X X and Chen T S 2018 Chin. Phys. B 27 047307
|
[8] |
Xie G, Tang C, Wang T, Guo Q, Zhang B, Sheng K and Ng W T 2013 Chin. Phys. B 22 026103
|
[9] |
Li Y, Xiong Z, Zhang D, Xiu X, Liu D, Wang S, Hua X, Xie Z, Tao T, Liu B, Chen P, Zhang R and Zheng Y 2018 Superlattices Microstruct. 117 235
|
[10] |
Kumar M, Kumar S, Chauhan N, Sakthi Kumar D, Kumar V and Singh R 2017 Semicond. Sci. Technol. 32 085012
|
[11] |
Li J, An L, Lu C and Liu J 2006 Nano Lett. 6 148
|
[12] |
Choi J H, Ham M H, Lee W and Myoung J M 2007 Solid State Commun. 142 437
|
[13] |
Qin L X, Xue C S, Zhuang H Z, Yang Z Z, Chen J H and Li H 2008 Chin. Phys. B 17 2180
|
[14] |
Oon H S and Cheong K Y 2013 Mater. Sci. Semicond. Process. 16 1217
|
[15] |
Yan J T and Lee C T 2009 Sens. Actuators B: Chem. 143 192
|
[16] |
Zhao B, Wang F, Chen H, Wang Y, Jiang M, Fang X and Zhao D 2015 Nano Lett. 15 3988
|
[17] |
Jin S, Wang X, Wang X, Ju M, Shen S, Liang W, Zhao Y, Feng Z, Playford H Y, Walton R I and Li C 2015 J. Phys. Chem. C 119 18221
|
[18] |
Lee S, Ham M H, Myoung J M and Lee W 2010 Acta Mater. 58 4714
|
[19] |
Chen P, Zhang R, Xu X F, Chen Z Z, Zhou Y G, Xie S Y, Shi Y, Shen B, Gu S L, Huang Z C, Hu J and Zheng Y D 2000 Appl. Phys. A 71 191
|
[20] |
Ham M H, Lee S, Myoung J M and Lee W 2011 Electron. Mater. Lett. 7 243
|
[21] |
Koley B, Dagenais M, Jin R, Pham J, Simonis G, Mclane G and Stone D 1997 J. Appl. Phys. 82 4586
|
[22] |
Harima H 2002 J. Phys.: Condens. Matter 14 R967
|
[23] |
Lee Y K, Medina H and Chiu P W 2012 J. Vac. Sci. Technol. B 30 011802
|
[24] |
Onuma T, Fujioka S, Yamaguchi T, Itoh Y, Higashiwaki M, Sasaki K, Masui T and Honda T 2014 J. Crystal Growth 401 330
|
[25] |
Wang Y, Xue C, Zhuang H, Wang Z, Zhang D, Huang Y and Liu W 2009 Appl. Surf. Sci. 255 7719
|
[26] |
Xue S B, Zhuang H Z, Xue C S and Hu L J 2006 Chin. Phys. Lett. 23 3055
|
[27] |
Jangir R, Porwal S, Tiwari P, Mondal P, Rai S K, Ganguli T, Oak S M and Deb S K 2012 J. Appl. Phys. 112 034307
|
[28] |
Kumar S, Kumar V, Singh T, Hähnel A and Singh R 2014 J. Nanopart. Res. 16 2189
|
[29] |
Sun C, Deng J, Kong L, Chen L, Shen Z, Cao Y, Zhang H and Wang X 2017 IOP Conf. Series: Materials Science and Engineering 275 012046
|
[30] |
Tien L C, Chen W T and Ho C H 2011 J. Am. Ceram. Soc. 94 3117
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|